90 Minutes-No Calculator

Note: In this examination, ln *x* denotes the natural logarithm of *x* (that is, logarithm to the base *e*).

- 1. Which of the following defines a function f for which f(-x) = -f(x)?
 - (A) $f(x) = x^2$ (B) $f(x) = \sin x$ (C) $f(x) = \cos x$
 - (D) $f(x) = \log x$ (E) $f(x) = e^x$

 $\ln(x-2) < 0$ if and only if 2. (A) x < 3**(B)** 0 < x < 3(C) 2 < x < 3(D) x > 2(E) x > 3If $\begin{cases} f(x) = \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, & \text{for } x \neq 2, \end{cases}$ 3. and if f is continuous at x = 2, then k =f(2) = k(A) 0 (B) $\frac{1}{6}$ (C) $\frac{1}{3}$ (E) $\frac{7}{5}$ (D) 1 $\int_{0}^{8} \frac{dx}{\sqrt{1+x}} =$ 4. (B) $\frac{3}{2}$ (A) 1 (C) 2 (D) 4 (E) 6 If $3x^2 + 2xy + y^2 = 2$, then the value of $\frac{dy}{dx}$ at x = 1 is 5. (A) –2 (C) 2 (E) not defined (B) 0 (D) 4

					1969 A	РС	alculus .	AB:	Section I
6.	What is $\lim_{h \to 0} \frac{8\left(\frac{1}{2}\right)}{1}$	$(h+h)^{8}$	$-8\left(\frac{1}{2}\right)^8$?						
	(A) 0	(B)	$\frac{1}{2}$	(C)	1	(D)	The limit do	oes no	t exist.
	(E) It cannot be	deterr	nined from the	inforr	nation given.				
7.	For what value of k will $x + \frac{k}{x}$ have a relative maximum at $x = -2$?								
	(A) –4	(B)	-2	(C)	2	(D)	4	(E)	None of these
8.	If $p(x) = (x+2)(x+k)$ and if the remainder is 12 when $p(x)$ is divided by $x-1$, then $k =$								
	(A) 2	(B)	3	(C)	6	(D)	11	(E)	13
9.	When the area in square units of an expanding circle is increasing twice as fast as its radius in linear units, the radius is								
	(A) $\frac{1}{4\pi}$	(B)	$\frac{1}{4}$	(C)	$\frac{1}{\pi}$	(D)	1	(E)	π
10.	The set of all points (e^t, t) , where t is a real number, is the graph of $y =$								
	(A) $\frac{1}{e^x}$	(B)	$e^{\frac{1}{x}}$	(C)	$\frac{1}{xe^x}$	(D)	$\frac{1}{\ln x}$	(E)	ln x
11.	The point <u>on the curve</u> $x^2 + 2y = 0$ that is nearest the point $\left(0, -\frac{1}{2}\right)$ occurs where y is								
	(A) $\frac{1}{2}$								

12. If $f(x) = \frac{4}{x-1}$ and g(x) = 2x, then the solution set of f(g(x)) = g(f(x)) is (A) $\left\{\frac{1}{3}\right\}$ (B) $\{2\}$ (C) $\{3\}$ (D) $\{-1,2\}$ (E) $\left\{\frac{1}{3},2\right\}$

13. The region bounded by the *x*-axis and the part of the graph of $y = \cos x$ between $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$ is separated into two regions by the line x = k. If the area of the region for $-\frac{\pi}{2} \le x \le k$ is three times the area of the region for $k \le x \le \frac{\pi}{2}$, then k =

(A)
$$\arcsin\left(\frac{1}{4}\right)$$
 (B) $\arcsin\left(\frac{1}{3}\right)$ (C) $\frac{\pi}{6}$
(D) $\frac{\pi}{4}$ (E) $\frac{\pi}{3}$

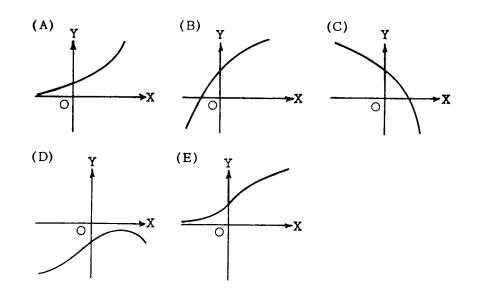
14. If the function f is defined by $f(x) = x^5 - 1$, then f^{-1} , the inverse function of f, is defined by $f^{-1}(x) =$

(A)
$$\frac{1}{\sqrt[5]{x+1}}$$
 (B) $\frac{1}{\sqrt[5]{x+1}}$ (C) $\sqrt[5]{x-1}$

(D)
$$\sqrt[5]{x} - 1$$
 (E) $\sqrt[5]{x+1}$

- 15. If f'(x) and g'(x) exist and f'(x) > g'(x) for all real x, then the graph of y = f(x) and the graph of y = g(x)
 - (A) intersect exactly once.
 - (B) intersect no more than once.
 - (C) do not intersect.
 - (D) could intersect more than once.
 - (E) have a common tangent at each point of intersection.

16. If y is a function of x such that y' > 0 for all x and y'' < 0 for all x, which of the following could be part of the graph of y = f(x)?



- 17. The graph of $y = 5x^4 x^5$ has a point of inflection at
 - (A) (0,0) only(B) (3,162) only(C) (4,256) only(D) (0,0) and (3,162)(E) (0,0) and (4,256)

18. If f(x) = 2 + |x-3| for all x, then the value of the derivative f'(x) at x = 3 is

- (A) -1 (B) 0 (C) 1 (D) 2 (E) nonexistent
- 19. A point moves on the x-axis in such a way that its velocity at time t (t > 0) is given by $v = \frac{\ln t}{t}$. At what value of t does v attain its maximum?

(A) 1 (B)
$$e^{\frac{1}{2}}$$
 (C) e (D) $e^{\frac{3}{2}}$

(E) There is no maximum value for v.

20. An equation for a tangent to the graph of $y = \arcsin \frac{x}{2}$ at the origin is

(A) x-2y=0 (B) x-y=0 (C) x=0 (D) y=0 (E) $\pi x-2y=0$

21. At x = 0, which of the following is true of the function f defined by $f(x) = x^2 + e^{-2x}$?

- (A) f is increasing.
- (B) f is decreasing.
- (C) f is discontinuous.
- (D) f has a relative minimum.
- (E) f has a relative maximum.

22.
$$\frac{d}{dx}(\ln e^{2x}) =$$

(A) $\frac{1}{e^{2x}}$ (B) $\frac{2}{e^{2x}}$ (C) $2x$ (D) 1 (E) 2

23. The area of the region bounded by the curve $y = e^{2x}$, the x-axis, the y-axis, and the line x = 2 is equal to

(A)
$$\frac{e^4}{2} - e$$
 (B) $\frac{e^4}{2} - 1$ (C) $\frac{e^4}{2} - \frac{1}{2}$

(D)
$$2e^4 - e$$
 (E) $2e^4 - 2$

24. If
$$\sin x = e^y$$
, $0 < x < \pi$, what is $\frac{dy}{dx}$ in terms of x?
(A) $-\tan x$ (B) $-\cot x$ (C) $\cot x$ (D) $\tan x$ (E) $\csc x$

25. A region in the plane is bounded by the graph of $y = \frac{1}{x}$, the *x*-axis, the line x = m, and the line x = 2m, m > 0. The area of this region

- (A) is independent of m.
- (B) increases as *m* increases.
- (C) decreases as *m* increases.
- (D) decreases as *m* increases when $m < \frac{1}{2}$; increases as *m* increases when $m > \frac{1}{2}$. (E) increases as *m* increases when $m < \frac{1}{2}$; decreases as *m* increases when $m > \frac{1}{2}$.

26.
$$\int_{0}^{1} \sqrt{x^{2} - 2x + 1} \, dx \text{ is}$$

(A) -1
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) 1
(E) none of the above

27. If
$$\frac{dy}{dx} = \tan x$$
, then $y =$
(A) $\frac{1}{2}\tan^2 x + C$ (B) $\sec^2 x + C$ (C) $\ln|\sec x| + C$
(D) $\ln|\cos x| + C$ (E) $\sec x \tan x + C$

28. The function defined by $f(x) = \sqrt{3}\cos x + 3\sin x$ has an amplitude of

(A) $3-\sqrt{3}$ (B) $\sqrt{3}$ (C) $2\sqrt{3}$ (D) $3+\sqrt{3}$ (E) $3\sqrt{3}$

29. $\int_{\pi/4}^{\pi/2} \frac{\cos x}{\sin x} dx =$ (A) $\ln \sqrt{2}$ (B) $\ln \frac{\pi}{4}$ (C) $\ln \sqrt{3}$ (D) $\ln \frac{\sqrt{3}}{2}$ (E) $\ln e$

30. If a function f is continuous for all x and if f has a relative maximum at (-1,4) and a relative minimum at (3,-2), which of the following statements must be true?

- (A) The graph of f has a point of inflection somewhere between x = -1 and x = 3.
- (B) f'(-1) = 0
- (C) The graph of *f* has a horizontal asymptote.
- (D) The graph of f has a horizontal tangent line at x = 3.
- (E) The graph of f intersects both axes.

31. If
$$f'(x) = -f(x)$$
 and $f(1) = 1$, then $f(x) =$
(A) $\frac{1}{2}e^{-2x+2}$ (B) e^{-x-1} (C) e^{1-x} (D) e^{-x} (E) $-e^{x}$

32. If a, b, c, d, and e are real numbers and $a \neq 0$, then the polynomial equation $ax^7 + bx^5 + cx^3 + dx + e = 0$ has

- (A) only one real root.
- (B) at least one real root.
- (C) an odd number of nonreal roots.
- (D) no real roots.
- (E) no positive real roots.
- 33. What is the average (mean) value of $3t^3 t^2$ over the interval $-1 \le t \le 2$?

(A)
$$\frac{11}{4}$$
 (B) $\frac{7}{2}$ (C) 8 (D) $\frac{33}{4}$ (E) 16

34. Which of the following is an equation of a curve that intersects at right angles every curve of the family $y = \frac{1}{x} + k$ (where *k* takes all real values)?

(A)
$$y = -x$$
 (B) $y = -x^2$ (C) $y = -\frac{1}{3}x^3$ (D) $y = \frac{1}{3}x^3$ (E) $y = \ln x$

- 35. At t = 0 a particle starts at rest and moves along a line in such a way that at time *t* its acceleration is $24t^2$ feet per second per second. Through how many feet does the particle move during the first 2 seconds?
 - (A) 32 (B) 48 (C) 64 (D) 96 (E) 192
- 36. The approximate value of $y = \sqrt{4 + \sin x}$ at x = 0.12, obtained from the tangent to the graph at x = 0, is
 - (A) 2.00 (B) 2.03 (C) 2.06 (D) 2.12 (E) 2.24
- 37. Which is the best of the following polynomial approximations to $\cos 2x$ near x = 0?

(A)
$$1 + \frac{x}{2}$$
 (B) $1 + x$ (C) $1 - \frac{x^2}{2}$ (D) $1 - 2x^2$ (E) $1 - 2x + x^2$
38. $\int \frac{x^2}{e^{x^2}} dx =$
(A) $-\frac{1}{3} \ln e^{x^3} + C$ (B) $-\frac{e^{x^3}}{3} + C$ (C) $-\frac{1}{3e^{x^3}} + C$
(D) $\frac{1}{3} \ln e^{x^3} + C$ (E) $\frac{x^3}{3e^{x^3}} + C$
39. If $y = \tan u$, $u = v - \frac{1}{v}$, and $v = \ln x$, what is the value of $\frac{dy}{dx}$ at $x = e$?
(A) 0 (B) $\frac{1}{e}$ (C) 1 (D) $\frac{2}{e}$ (E) $\sec^2 e$

AP Calculus Multiple-Choice Question Collection

Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.

40. If *n* is a non-negative integer, then $\int_0^1 x^n dx = \int_0^1 (1-x)^n dx$ for

- (A) no n(B) n even, only(C) n odd, only(D) nonzero n, only(E) all n
- 41. If $\begin{cases} f(x) = 8 x^2 & \text{for } -2 \le x \le 2, \\ f(x) = x^2 & \text{elsewhere,} \end{cases}$ then $\int_{-1}^{3} f(x) dx$ is a number between (A) 0 and 8 (B) 8 and 16 (C) 16 and 24 (D) 24 and 32 (E) 32 and 40
- 42. What are all values of k for which the graph of $y = x^3 3x^2 + k$ will have three distinct x-intercepts?
 - (A) All k > 0 (B) All k < 4 (C) k = 0, 4 (D) 0 < k < 4 (E) All k

43. $\int \sin(2x+3)dx =$ (A) $\frac{1}{2}\cos(2x+3)+C$ (B) $\cos(2x+3)+C$ (C) $-\cos(2x+3)+C$ (D) $-\frac{1}{2}\cos(2x+3)+C$ (E) $-\frac{1}{5}\cos(2x+3)+C$

44. The fundamental period of the function defined by $f(x) = 3 - 2\cos^2\frac{\pi x}{3}$ is

(A) 1 (B) 2 (C) 3 (D) 5 (E) 6

45. If $\frac{d}{dx}(f(x)) = g(x)$ and $\frac{d}{dx}(g(x)) = f(x^2)$, then $\frac{d^2}{dx^2}(f(x^3)) =$ (A) $f(x^6)$ (B) $g(x^3)$ (C) $3x^2g(x^3)$

(D) $9x^4f(x^6) + 6xg(x^3)$ (E) $f(x^6) + g(x^3)$

AP Calculus Multiple-Choice Question Collection

Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.

- 1. B Sine is the only odd function listed. sin(-x) = -sin(x).
- 2. C $\ln t < 0$ for $0 < t < 1 \Rightarrow \ln(x-2) < 0$ for 2 < x < 3.
- 3. B Need to have $\lim_{x \to 2} f(x) = f(2) = k$.

$$k = \lim_{x \to 2} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2} = \lim_{x \to 2} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2} \cdot \frac{\sqrt{2x+5} + \sqrt{x+7}}{\sqrt{2x+5} + \sqrt{x+7}}$$
$$= \lim_{x \to 2} \frac{2x+5 - (x+7)}{x-2} \cdot \frac{1}{\sqrt{2x+5} + \sqrt{x+7}} = \lim_{x \to 2} \frac{1}{\sqrt{2x+5} + \sqrt{x+7}} = \frac{1}{6}$$

- 4. D $\int_0^8 \frac{dx}{\sqrt{1+x}} = 2\sqrt{1+x} \Big|_0^8 = 2(3-1) = 4$
- 5. E Using implicit differentiation, $6x + 2xy' + 2y + 2y \cdot y' = 0$. Therefore $y' = \frac{-2y 6x}{2x + 2y}$. When x = 1, $3 + 2y + y^2 = 2 \Rightarrow 0 = y^2 + 2y + 1 = (y + 1)^2 \Rightarrow y = -1$ Therefore 2x + 2y = 0 and so $\frac{dy}{dx}$ is not defined at x = 1.

6. B This is the derivative of
$$f(x) = 8x^8$$
 at $x = \frac{1}{2}$
$$f'\left(\frac{1}{2}\right) = 64\left(\frac{1}{2}\right)^7 = \frac{1}{2}$$

7. D With $f(x) = x + \frac{k}{x}$, we need $0 = f'(-2) = 1 - \frac{k}{4}$ and so k = 4. Since f''(-2) < 0 for k = 4, f does have a relative maximum at x = -2.

8. B
$$p(x) = q(x)(x-1) + 12$$
 for some polynomial $q(x)$ and so $12 = p(1) = (1+2)(1+k) \Longrightarrow k = 3$

9. C
$$A = \pi r^2$$
, $\frac{dA}{dt} = 2\pi r \cdot \frac{dr}{dt}$ and from the given information in the problem $\frac{dA}{dt} = 2\frac{dr}{dt}$

So,
$$2\frac{dr}{dt} = 2\pi r \cdot \frac{dr}{dt} \Longrightarrow r = \frac{1}{\pi}$$

AP Calculus Multiple-Choice Question Collection

 $Copyright @ 2005 \ by \ College \ Board. \ All \ rights \ reserved. \ Available \ at \ apcentral. college board. com.$

10. E $x = e^y \implies y = \ln x$

1

1. B Let *L* be the distance from
$$\left(x, -\frac{x^2}{2}\right)$$
 and $\left(0, -\frac{1}{2}\right)$.
 $L^2 = (x-0)^2 + \left(\frac{x^2}{2} - \frac{1}{2}\right)^2$
 $2L \cdot \frac{dL}{dx} = 2x + 2\left(\frac{x^2}{2} - \frac{1}{2}\right)(x)$
 $\frac{dL}{dx} = \frac{2x + 2\left(\frac{x^2}{2} - \frac{1}{2}\right)(x)}{2L} = \frac{2x + x^3 - x}{2L} = \frac{x^3 + x}{2L} = \frac{x(x^2 + 1)}{2L}$

 $\frac{dL}{dx} < 0$ for all x < 0 and $\frac{dL}{dx} > 0$ for all x > 0, so the minimum distance occurs at x = 0.

The nearest point is the origin.

12. A
$$\frac{4}{2x-1} = 2\left(\frac{4}{x-1}\right) \Rightarrow x-1 = 4x-2; x = \frac{1}{3}$$

13. C
$$\int_{-\pi/2}^{k} \cos x \, dx = 3 \int_{k}^{\pi/2} \cos x \, dx; \ \sin k - \sin\left(-\frac{\pi}{2}\right) = 3\left(\sin\frac{\pi}{2} - \sin k\right)$$

 $\sin k + 1 = 3 - 3\sin k; \ 4\sin k = 2 \Longrightarrow k = \frac{\pi}{6}$

14. E
$$y = x^5 - 1$$
 has an inverse $x = y^5 - 1 \Longrightarrow y = \sqrt[5]{x+1}$

- 15. B The graphs do not need to intersect (eg. $f(x) = -e^{-x}$ and $g(x) = e^{-x}$). The graphs could intersect (e.g. f(x) = 2x and g(x) = x). However, if they do intersect, they will intersect no more than once because f(x) grows faster than g(x).
- 16. B $y' > 0 \Rightarrow y$ is increasing; $y'' < 0 \Rightarrow$ the graph is concave down. Only B meets these conditions.
- 17. B $y' = 20x^3 5x^4$, $y'' = 60x^2 20x^3 = 20x^2(3-x)$. The only sign change in y'' is at x = 3. The only point of inflection is (3,162).

18. E There is no derivative at the vertex which is located at
$$x = 3$$
.

19. C
$$\frac{dv}{dt} = \frac{1 - \ln t}{t^2} > 0$$
 for $0 < t < e$ and $\frac{dv}{dt} < 0$ for $t > e$, thus v has its maximum at $t = e$.

20. A
$$y(0) = 0$$
 and $y'(0) = \frac{\frac{1}{2}}{\sqrt{1 - \frac{x^2}{4}}}\Big|_{x=0} = \frac{1}{\sqrt{4 - x^2}}\Big|_{x=0} = \frac{1}{2}$. The tangent line is $y = \frac{1}{2}x \Rightarrow x - 2y = 0$.

21. B
$$f'(x) = 2x - 2e^{-2x}$$
, $f'(0) = -2$, so f is decreasing

22. E
$$\ln e^{2x} = 2x \Rightarrow \frac{d}{dx} \left(\ln e^{2x} \right) = \frac{d}{dx} (2x) = 2$$

23. C
$$\int_0^2 e^{2x} dx = \frac{1}{2} e^{2x} \Big|_0^2 = \frac{1}{2} (e^4 - 1)$$

24. C
$$y = \ln \sin x, y' = \frac{\cos x}{\sin x} = \cot x$$

25. A
$$\int_{m}^{2m} \frac{1}{x} dx = \ln x \Big|_{m}^{2m} = \ln (2m) - \ln (m) = \ln 2$$
 so the area is independent of m.

26. C
$$\int_0^1 \sqrt{x^2 - 2x + 1} \, dx = \int_0^1 |x - 1| \, dx = \int_0^1 -(x - 1) \, dx = -\frac{1}{2} (x - 1)^2 \Big|_0^1 = \frac{1}{2}$$

Alternatively, the graph of the region is a right triangle with vertices at (0,0), (0,1), and (1,0). The area is $\frac{1}{2}$.

27. C
$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\ln|\cos x| + C = \ln|\sec x| + C$$

28. C $\sqrt{3}\cos x + 3\sin x$ can be thought of as the expansion of $\sin(x+y)$. Since $\sqrt{3}$ and 3 are too large for values of $\sin y$ and $\cos y$, multiply and divide by the result of the Pythagorean Theorem used on those values, i.e. $2\sqrt{3}$. Then

$$\sqrt{3}\cos x + 3\sin x = 2\sqrt{3} \left(\frac{\sqrt{3}}{2\sqrt{3}}\cos x + \frac{3}{2\sqrt{3}}\sin x\right) = 2\sqrt{3} \left(\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x\right)$$
$$= 2\sqrt{3} (\sin y \cos x + \cos y \sin x) = 2\sqrt{3} \sin (y + x)$$
where $y = \sin^{-1}\left(\frac{1}{2}\right)$. The amplitude is $2\sqrt{3}$.

Alternatively, the function f(x) is periodic with period 2π . $f'(x) = -\sqrt{3} \sin x + 3\cos x = 0$ when $\tan x = \sqrt{3}$. The solutions over one period are $x = \frac{\pi}{3}, \frac{4\pi}{3}$. Then $f\left(\frac{\pi}{3}\right) = 2\sqrt{3}$ and $f\left(\frac{4\pi}{3}\right) = -2\sqrt{3}$. So the amplitude is $2\sqrt{3}$.

29. A
$$\int_{\pi/4}^{\pi/2} \frac{\cos x}{\sin x} dx = \ln(\sin x) \Big|_{\pi/4}^{\pi/2} = \ln 1 - \ln \frac{1}{\sqrt{2}} = \ln \sqrt{2}$$

30. E Because f is continuous for all x, the Intermediate Value Theorem implies that the graph of f must intersect the x-axis. The graph must also intersect the y-axis since f is defined for all x, in particular, at x = 0.

31. C
$$\frac{dy}{dx} = -y \Rightarrow y = ce^{-x}$$
 and $1 = ce^{-1} \Rightarrow c = e; y = e \cdot e^{-x} = e^{1-x}$

32. B If a < 0 then $\lim_{x \to -\infty} y = \infty$ and $\lim_{x \to \infty} y = -\infty$ which would mean that there is at least one root. If a > 0 then $\lim_{x \to -\infty} y = -\infty$ and $\lim_{x \to \infty} y = \infty$ which would mean that there is at least one root. In both cases the equation has at least one root.

33. A
$$\frac{1}{3}\int_{-1}^{2} 3t^3 - t^2 dt = \frac{1}{3}\left(\frac{3}{4}t^4 - \frac{1}{3}t^3\right)\Big|_{-1}^{2} = \frac{1}{3}\left(\left(12 - \frac{8}{3}\right) - \left(\frac{3}{4} + \frac{1}{3}\right)\right) = \frac{11}{4}$$

34. D
$$y' = -\frac{1}{x^2}$$
, so the desired curve satisfies $y' = x^2 \Rightarrow y = \frac{1}{3}x^3 + C$

1969 Calculus AB Solutions

35. A $a(t) = 24t^2$, $v(t) = 8t^3 + C$ and $v(0) = 0 \Rightarrow C = 0$. The particle is always moving to the right, so distance $= \int_0^2 8t^3 dt = 2t^4 \Big|_0^2 = 32$.

36. B
$$y = \sqrt{4 + \sin x}, \ y(0) = 2, \ y'(0) = \frac{\cos 0}{2\sqrt{4 + \sin 0}} = \frac{1}{4}$$
. The linear approximation to y is
 $L(x) = 2 + \frac{1}{4}x \cdot L(1.2) = 2 + \frac{1}{4}(1.2) = 2.03$

37. D All options have the same value at
$$x = 0$$
. We want the one that has the same first and second derivatives at $x = 0$ as $y = \cos 2x$: $y'(0) = -2\sin 2x \Big|_{x=0} = 0$ and $y''(0) = -4\cos 2x \Big|_{x=0} = -4$.
For $y = 1 - 2x^2$, $y'(0) = -4x \Big|_{x=0} = 0$ and $y''(0) = -4$ and no other option works.
38. C $\int \frac{x^2}{e^{x^3}} dx = -\frac{1}{3} \int e^{-x^3} (-3x^2 dx) = -\frac{1}{3} e^{-x^3} + C = -\frac{1}{3e^{-x^3}} + C$

39. D
$$x = e \Rightarrow v = 1, u = 0, y = 0; \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} = \left(\sec^2 u\right) \left(1 + \frac{1}{v^2}\right) \left(\frac{1}{x}\right) = (1)(2) \left(e^{-1}\right) = \frac{2}{e^{-1}}$$

40. E One solution technique is to evaluate each integral and note that the value is $\frac{1}{n+1}$ for each.

Another technique is to use the substitution u = 1 - x; $\int_0^1 (1 - x)^n dx = \int_1^0 u^n (-du) = \int_0^1 u^n du$. Integrals do not depend on the variable that is used and so $\int_0^1 u^n du$ is the same as $\int_0^1 x^n dx$.

41. D
$$\int_{-1}^{3} f(x) dx = \int_{-1}^{2} \left(8 - x^{2}\right) dx + \int_{2}^{3} x^{2} dx = \left(8x - \frac{1}{3}x^{3}\right)\Big|_{-1}^{2} + \frac{1}{3}x^{3}\Big|_{2}^{3} = 27\frac{1}{3}$$

42. D $y = x^3 - 3x^2 + k$, $y' = 3x^2 - 6x = 3x(x-2)$. So *f* has a relative maximum at (0, k) and a relative minimum at (2, k-4). There will be 3 distinct *x*-intercepts if the maximum and minimum are on the opposite sides of the *x*-axis. We want $k - 4 < 0 < k \Rightarrow 0 < k < 4$.

43. D
$$\int \sin(2x+3) dx = -\frac{1}{2}\cos(2x+3) + C$$

1969 Calculus AB Solutions

44. C Since $\cos 2A = 2\cos^2 A - 1$, we have $3 - 2\cos^2 \frac{\pi x}{3} = 3 - (1 + \cos \frac{2\pi x}{3})$ and the latter expression has period $\frac{2\pi}{\left(\frac{2\pi}{3}\right)} = 3$

45. D Let $y = f(x^3)$. We want y'' where f'(x) = g(x) and $f''(x) = g'(x) = f(x^2)$

$$y = f(x^{3})$$

$$y' = f'(x^{3}) \cdot 3x^{2}$$

$$y'' = 3x^{2} (f''(x^{3}) \cdot 3x^{2}) + f'(x^{3}) \cdot 6x$$

$$= 9x^{4} f''(x^{3}) + 6x f'(x^{3}) = 9x^{4} f((x^{3})^{2}) + 6x g(x^{3}) = 9x^{4} f(x^{6}) + 6x g(x^{3})$$