90 Minutes-No Calculator

(D) $2x + e^x$

Notes: (1) In this examination, ln *x* denotes the natural logarithm of *x* (that is, logarithm to the base *e*).

(2) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f(x) is a real number.

1. If
$$y = x^2 e^x$$
, then $\frac{dy}{dx} =$
(A) $2xe^x$ (B) $x(x+2e^x)$ (C) $xe^x(x+2)$

(E)

2. What is the domain of the function f given by $f(x) = \frac{\sqrt{x^2 - 4}}{x - 3}$?

(A) $\{x : x \neq 3\}$ (B) $\{x : |x| \le 2\}$ (C) $\{x : |x| \ge 2\}$ (D) $\{x : |x| \ge 2 \text{ and } x \ne 3\}$ (E) $\{x : x \ge 2 \text{ and } x \ne 3\}$

2x+e

- 3. A particle with velocity at any time *t* given by $v(t) = e^t$ moves in a straight line. How far does the particle move from t = 0 to t = 2?
 - (A) $e^2 1$ (B) e 1 (C) 2e (D) e^2 (E) $\frac{e^3}{3}$

The graph of $y = \frac{-5}{x-2}$ is concave downward for all values of x such that 4. (A) x < 0(B) x < 2(C) *x* < 5 (D) x > 0(E) x > 2 $\int \sec^2 x \, dx =$ 5. (B) $\csc^2 x + C$ (C) $\cos^2 x + C$ (A) $\tan x + C$ (D) $\frac{\sec^3 x}{3} + C$ (E) $2 \sec^2 x \tan x + C$

AP Calculus Multiple-Choice Question Collection

Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.

- 8. The graph of y = f(x) is shown in the figure above. On which of the following intervals are $\frac{dy}{dx} > 0$ and $\frac{d^2y}{dx^2} < 0$?
 - I. a < x < bII. b < x < cIII. c < x < d
 - III. c < x <

(A) I only

(B) II only

(C) III only

(D) I and II

(E) II and III

9. If $x + 2xy - y^2 = 2$, then at the point (1,1), $\frac{dy}{dx}$ is

(A)
$$\frac{3}{2}$$
 (B) $\frac{1}{2}$ (C) 0 (D) $-\frac{3}{2}$ (E) nonexistent

10. If $\int_{0}^{k} (2kx - x^2) dx = 18$, then k =

(A) -9 (B) -3 (C) 3 (D) 9 (E) 18

11. An equation of the line tangent to the graph of $f(x) = x(1-2x)^3$ at the point (1,-1) is

- (A) y = -7x + 6 (B) y = -6x + 5 (C) y = -2x + 1
- (D) y = 2x 3 (E) y = 7x 8

12. If
$$f(x) = \sin x$$
, then $f'\left(\frac{\pi}{3}\right) =$
(A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$ (E) $\sqrt{3}$

13. If the function f has a continuous derivative on [0,c], then $\int_0^c f'(x) dx =$

(A) f(c) - f(0) (B) |f(c) - f(0)| (C) f(c) (D) f(x) + c (E) f''(c) - f''(0)

14.
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{\sqrt{1 + \sin \theta}} d\theta =$$

(A) $-2(\sqrt{2}-1)$ (B) $-2\sqrt{2}$ (C) $2\sqrt{2}$
(D) $2(\sqrt{2}-1)$ (E) $2(\sqrt{2}+1)$

15. If $f(x) = \sqrt{2x}$, then f'(2) =

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{2}$ (C) $\frac{\sqrt{2}}{2}$ (D) 1 (E) $\sqrt{2}$

16. A particle moves along the *x*-axis so that at any time $t \ge 0$ its position is given by $x(t) = t^3 - 3t^2 - 9t + 1$. For what values of *t* is the particle at rest?

(A) No values (B) 1 only (C) 3 only (D) 5 only (E) 1 and 3
17.
$$\int_{0}^{1} (3x-2)^{2} dx =$$

(A) $-\frac{7}{3}$ (B) $-\frac{7}{9}$ (C) $\frac{1}{9}$ (D) 1 (E) 3
18. If $y = 2\cos\left(\frac{x}{2}\right)$, then $\frac{d^{2}y}{dx^{2}} =$
(A) $-8\cos\left(\frac{x}{2}\right)$ (B) $-2\cos\left(\frac{x}{2}\right)$ (C) $-\sin\left(\frac{x}{2}\right)$ (D) $-\cos\left(\frac{x}{2}\right)$ (E) $-\frac{1}{2}\cos\left(\frac{x}{2}\right)$
19. $\int_{2}^{3} \frac{x}{x^{2}+1} dx =$
(A) $\frac{1}{2}\ln\frac{3}{2}$ (B) $\frac{1}{2}\ln 2$ (C) $\ln 2$ (D) $2\ln 2$ (E) $\frac{1}{2}\ln 5$

20. Let f be a polynomial function with degree greater than 2. If $a \neq b$ and f(a) = f(b) = 1, which of the following must be true for at least one value of x between a and b?

(C) II only

(D) I and II only

I. f(x) = 0II. f'(x) = 0III. f''(x) = 0(A) None

(B) I only

(E) I, II, and III

21. The area of the region enclosed by the graphs of y = x and $y = x^2 - 3x + 3$ is

(A) $\frac{2}{3}$ (C) $\frac{4}{3}$ (E) $\frac{14}{3}$ (D) 2 (B) 1 22. If $\ln x - \ln \left(\frac{1}{x}\right) = 2$, then x =(A) $\frac{1}{e^2}$ (B) $\frac{1}{e}$ (E) e^2 (C) *e* (D) 2*e* 23. If $f'(x) = \cos x$ and g'(x) = 1 for all x, and if f(0) = g(0) = 0, then $\lim_{x \to 0} \frac{f(x)}{g(x)}$ is (A) $\frac{\pi}{2}$ (B) 1 (C) 0 (D) -1 (E) nonexistent 24. $\frac{d}{dx}(x^{\ln x}) =$ (A) $x^{\ln x}$ (B) $(\ln x)^x$ (C) $\frac{2}{r}(\ln x)(x^{\ln x})$ (D) $(\ln x)(x^{\ln x-1})$ (E) $2(\ln x)(x^{\ln x})$ 25. For all x > 1, if $f(x) = \int_{1}^{x} \frac{1}{t} dt$, then f'(x) =(A) 1 (B) $\frac{1}{x}$ (C) $\ln x - 1$ (D) $\ln x$ (E) e^x 26. $\int_{0}^{\frac{\pi}{2}} x \cos x \, dx =$ (A) $-\frac{\pi}{2}$ (B) -1 (C) $1-\frac{\pi}{2}$ (D) 1 (E) $\frac{\pi}{2}-1$

27. At
$$x = 3$$
, the function given by $f(x) = \begin{cases} x^2, & x < 3 \\ 6x - 9, & x \ge 3 \end{cases}$ is

- (A) undefined.
- (B) continuous but not differentiable.
- (C) differentiable but not continuous.
- (D) neither continuous nor differentiable.
- (E) both continuous and differentiable.

28.
$$\int_{1}^{4} |x-3| dx =$$
(A) $-\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{5}{2}$ (D) $\frac{9}{2}$ (E) 5

29. The $\lim_{h \to 0} \frac{\tan 3(x+h) - \tan 3x}{h}$ is
(A) 0 (B) $3\sec^{2}(3x)$ (C) $\sec^{2}(3x)$ (D) $3\cot(3x)$ (E) nonexistent

- 30. A region in the first quadrant is enclosed by the graphs of $y = e^{2x}$, x = 1, and the coordinate axes. If the region is rotated about the <u>y-axis</u>, the volume of the solid that is generated is represented by which of the following integrals?
 - (A) $2\pi \int_0^1 x e^{2x} dx$
 - (B) $2\pi \int_0^1 e^{2x} dx$
 - (C) $\pi \int_0^1 e^{4x} dx$
 - (D) $\pi \int_0^e y \ln y \, dy$
 - (E) $\frac{\pi}{4} \int_0^e \ln^2 y \, dy$

31. If $f(x) = \frac{x}{x+1}$, then the inverse function, f^{-1} , is given by $f^{-1}(x) =$

(A)
$$\frac{x-1}{x}$$
 (B) $\frac{x+1}{x}$ (C) $\frac{x}{1-x}$ (D) $\frac{x}{x+1}$ (E) x

32. Which of the following does NOT have a period of π ?

(A)
$$f(x) = \sin\left(\frac{1}{2}x\right)$$
 (B) $f(x) = |\sin x|$ (C) $f(x) = \sin^2 x$
(D) $f(x) = \tan x$ (E) $f(x) = \tan^2 x$

33. The absolute maximum value of $f(x) = x^3 - 3x^2 + 12$ on the closed interval [-2, 4] occurs at x =

(A) 4 (B) 2 (C) 1 (D) 0 (E) -2

- 34. The area of the shaded region in the figure above is represented by which of the following integrals?
 - (A) $\int_{a}^{c} (|f(x)| |g(x)|) dx$
 - (B) $\int_{b}^{c} f(x) dx \int_{a}^{c} g(x) dx$
 - (C) $\int_{a}^{c} (g(x) f(x)) dx$

(D)
$$\int_{a}^{c} (f(x) - g(x)) dx$$

(E)
$$\int_{a}^{b} (g(x) - f(x)) dx + \int_{b}^{c} (f(x) - g(x)) dx$$

AP Calculus Multiple-Choice Question Collection

 $Copyright @ 2005 \ by \ College \ Board. \ All \ rights \ reserved. \ Available \ at \ apcentral. college \ board. com.$

1988 AP Calculus AB: Section I 35. $4\cos\left(x+\frac{\pi}{3}\right) =$ (A) $2\sqrt{3}\cos x - 2\sin x$ (B) $2\cos x - 2\sqrt{3}\sin x$ (C) $2\cos x + 2\sqrt{3}\sin x$ (D) $2\sqrt{3}\cos x + 2\sin x$ (E) $4\cos x + 2$ 36. What is the average value of y for the part of the curve $y = 3x - x^2$ which is in the first quadrant? (C) $\frac{3}{2}$ (D) $\frac{9}{4}$ (E) $\frac{9}{2}$ (A) -6 (B) -2 37. If $f(x) = e^x \sin x$, then the number of zeros of f on the closed interval $[0, 2\pi]$ is (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 38. For x > 0, $\int \left(\frac{1}{x}\int_{1}^{x}\frac{du}{u}\right) dx =$ (A) $\frac{1}{r^3} + C$ (B) $\frac{8}{r^4} - \frac{2}{r^2} + C$ (C) $\ln(\ln x) + C$ (D) $\frac{\ln(x^2)}{2} + C$ (E) $\frac{\left(\ln x\right)^2}{2} + C$ 39. If $\int_{1}^{10} f(x) dx = 4$ and $\int_{10}^{3} f(x) dx = 7$, then $\int_{1}^{3} f(x) dx = 7$ (A) –3 (B) 0 (C) 3 (D) 10 (E) 11

40. The sides of the rectangle above increase in such a way that $\frac{dz}{dt} = 1$ and $\frac{dx}{dt} = 3\frac{dy}{dt}$. At the instant when x = 4 and y = 3, what is the value of $\frac{dx}{dt}$?

- (A) $\frac{1}{3}$ (B) 1 (C) 2 (D) $\sqrt{5}$ (E) 5
- 41. If $\lim_{x \to 3} f(x) = 7$, which of the following must be true?
 - I. f is continuous at x = 3.
 - II. f is differentiable at x = 3.
 - III. f(3) = 7
 - (A) None(B) II only(C) III only(D) I and III only(E) I, II, and III
- 42. The graph of which of the following equations has y = 1 as an asymptote?

(A)
$$y = \ln x$$
 (B) $y = \sin x$ (C) $y = \frac{x}{x+1}$ (D) $y = \frac{x^2}{x-1}$ (E) $y = e^{-x}$

- 43. The volume of the solid obtained by revolving the region enclosed by the ellipse $x^2 + 9y^2 = 9$ about the *x*-axis is
 - (A) 2π (B) 4π (C) 6π (D) 9π (E) 12π

- 44. Let *f* and *g* be odd functions. If *p*, *r*, and *s* are nonzero functions defined as follows, which must be odd?
 - I.p(x) = f(g(x))II.r(x) = f(x) + g(x)III.s(x) = f(x)g(x)(A)I only(B)II only(C)I and II only(D)II and III only(E)I, II, and III
- 45. The volume of a cylindrical tin can with a top and a bottom is to be 16π cubic inches. If a minimum amount of tin is to be used to construct the can, what must be the height, in inches, of the can?
 - (A) $2\sqrt[3]{2}$ (B) $2\sqrt{2}$ (C) $2\sqrt[3]{4}$ (D) 4 (E) 8

1. C
$$\frac{dy}{dx} = x^2 \cdot \frac{d}{dx}(e^x) + e^x \cdot \frac{d}{dx}(x^2) = x^2 e^x + 2xe^x = xe^x(x+2)$$

2. D
$$x^2 - 4 \ge 0$$
 and $x \ne 3 \implies |x| \ge 2$ and $x \ne 3$

3. A Distance
$$= \int_0^2 |v(t)| dt = \int_0^2 e^t dt = e^t \Big|_0^2 = e^2 - e^0 = e^2 - 1$$

4. E Students should know what the graph looks like without a calculator and choose option E. Or $y = -5(x-2)^{-1}$; $y' = 5(x-2)^{-2}$; $y'' = -10(x-2)^{-3}$. y'' < 0 for x > 2.

5. A
$$\int \sec^2 x \, dx = \int d(\tan x) = \tan x + C$$

6. D
$$\frac{dy}{dx} = \frac{x \cdot \frac{d}{dx}(\ln x) - \ln x \cdot \frac{d}{dx}(x)}{x^2} = \frac{x \cdot \left(\frac{1}{x}\right) - \ln x \cdot (1)}{x^2} = \frac{1 - \ln x}{x^2}$$

7. D
$$\int x(3x^2+5)^{-\frac{1}{2}} dx = \frac{1}{6} \int (3x^2+5)^{-\frac{1}{2}} (6x dx) = \frac{1}{6} \cdot 2(3x^2+5)^{\frac{1}{2}} + C = \frac{1}{3}(3x^2+5)^{\frac{1}{2}} + C$$

8. B
$$\frac{dy}{dx} > 0 \Rightarrow y$$
 is increasing; $\frac{d^2y}{dx^2} < 0 \Rightarrow$ graph is concave down. This is only on $b < x < c$.

9. E
$$1 + (2x \cdot y' + 2y) - 2y \cdot y' = 0; y' = \frac{1+2y}{2y-2x}$$
. This cannot be evaluated at (1,1) and so y' does not exist at (1,1).

10. C
$$18 = \left(kx^2 - \frac{1}{3}x^3\right)\Big|_0^k = \frac{2}{3}k^3 \implies k^3 = 27$$
, so $k = 3$

11. A
$$f'(x) = x \cdot 3(1-2x)^2(-2) + (1-2x)^3$$
; $f'(1) = -7$. Only option A has a slope of -7.

12. B
$$f'\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$

13. A By the Fundamental Theorem of Calculus $\int_0^c f'(x) dx = f(x) \Big|_0^c = f(c) - f(0)$

14. D
$$\int_0^{\frac{\pi}{2}} (1+\sin\theta)^{-1/2} (\cos\theta d\theta) = 2(1+\sin\theta)^{1/2} \Big|_0^{\frac{\pi}{2}} = 2(\sqrt{2}-1)$$

15. B
$$f(x) = \sqrt{2x} = \sqrt{2} \cdot \sqrt{x}; f'(x) = \sqrt{2} \cdot \frac{1}{2\sqrt{x}}; f'(2) = \sqrt{2} \cdot \frac{1}{2\sqrt{2}} = \frac{1}{2}$$

16. C At rest when
$$0 = v(t) = x'(t) = 3t^2 - 6t - 9 = 3(t^2 - 2t - 3) = 3(t - 3)(t + 1)$$

 $t = -1, 3 \text{ and } t \ge 0 \Longrightarrow t = 3$

17. D
$$\int_0^1 (3x-2)^2 dx = \frac{1}{3} \int_0^1 (3x-2)^2 (3dx) = \frac{1}{3} \cdot \frac{1}{3} (3x-2)^3 \Big|_0^1 = \frac{1}{9} (1-(-8)) = 1$$

18. E
$$y' = 2 \cdot \left(-\sin\left(\frac{x}{2}\right) \cdot \frac{1}{2}\right) = -\sin\left(\frac{x}{2}\right); \ y'' = -\left(\cos\left(\frac{x}{2}\right) \cdot \left(\frac{1}{2}\right)\right) = -\frac{1}{2}\cos\left(\frac{x}{2}\right)$$

19. B
$$\int_{2}^{3} \frac{x}{x^{2}+1} dx = \frac{1}{2} \int_{2}^{3} \frac{2x \, dx}{x^{2}+1} = \frac{1}{2} \ln \left(x^{2}+1 \right) \Big|_{2}^{3} = \frac{1}{2} \left(\ln 10 - \ln 5 \right) = \frac{1}{2} \ln 2$$

- 20. C Consider the cases:
 - I. false if f(x) = 1
 - II. This is true by the Mean Value Theorem

III. false if the graph of *f* is a parabola with vertex at $x = \frac{a+b}{2}$. Only II must be true.

21. C
$$x = x^2 - 3x + 3$$
 at $x = 1$ and at $x = 3$.
Area $= \int_1^3 \left(x - \left(x^2 - 3x + 3 \right) \right) dx = \int_1^3 \left(-x^2 + 4x - 3 \right) dx = \left(-\frac{1}{3}x^3 + 2x^2 - 3x \right) \Big|_1^3 = \frac{4}{3}$

22. C
$$2 = \ln x - \ln \frac{1}{x} = \ln x + \ln x \Rightarrow \ln x = 1 \Rightarrow x = e$$

23. B By L'Hôpital's rule (which is no longer part of the AB Course Description), $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \frac{f'(0)}{g'(0)} = \frac{\cos 0}{1} = \frac{1}{1} = 1$

Alternatively, $f'(x) = \cos x$ and $f(0) = 0 \Rightarrow f(x) = \sin x$. Also g'(x) = 1 and $g(0) = 0 \Rightarrow g(x) = x$. Hence $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\sin x}{x} = 1$.

- 24. C Let $y = x^{\ln x}$ and take the ln of each side. $\ln y = \ln x^{\ln x} = \ln x \cdot \ln x$. Take the derivative of each side with respect to x. $\frac{y'}{y} = 2 \ln x \cdot \frac{1}{x} \Rightarrow y' = 2 \ln x \cdot \frac{1}{x} \cdot x^{\ln x}$
- 25. B Use the Fundamental Theorem of Calculus. $f'(x) = \frac{1}{x}$
- 26. E Use the technique of antiderivatives by parts: Let u = x and $dv = \cos x \, dx$. $\int_{0}^{\frac{\pi}{2}} x \cos x \, dx = \left(x \sin x - \int \sin x \, dx\right) \Big|_{0}^{\frac{\pi}{2}} = \left(x \sin x + \cos x\right) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 1$
- 27. E The function is continuous at x = 3 since $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = 9 = f(3)$. Also, the derivative as you approach x = 3 from the left is 6 and the derivative as you approach x = 3 from the right is also 6. These two facts imply that f is differentiable at x = 3. The function is clearly continuous and differentiable at all other values of x.
- 28. C The graph is a V with vertex at x = 3. The integral gives the sum of the areas of the two triangles that the V forms with the horizontal axis for x from 1 to 4. These triangles have areas of 2 and 0.5 respectively.

29. B This limit gives the derivative of the function $f(x) = \tan(3x)$. $f'(x) = 3\sec^2(3x)$

30. A Shells (which is no longer part of the AB Course Description)

$$\sum 2\pi rh\Delta x$$
, where $r = x, h = e^{2x}$
Volume = $2\pi \int_0^1 x e^{2x} dx$

31. C Let
$$y = f(x)$$
 and solve for x.
 $y = \frac{x}{x+1}; xy + y = x; x(y-1) = -y; x = \frac{y}{1-y} \Rightarrow f^{-1}(x) = \frac{x}{1-x}$

- 32. A The period for $\sin\left(\frac{x}{2}\right)$ is $\frac{2\pi}{\frac{1}{2}} = 4\pi$.
- 33. A Check the critical points and the endpoints.

 $f'(x) = 3x^2 - 6x = 3x(x-2)$ so the critical points are 0 and 2.

x	-2	0	2	4
f(x)	-8	12	8	28

Absolute maximum is at x = 4.

34. D The interval is x = a to x = c. The height of a rectangular slice is the top curve, f(x), minus the bottom curve, g(x). The area of the rectangular slice is therefore $(f(x) - g(x))\Delta x$. Set up a Riemann sum and take the limit as Δx goes to 0 to get a definite integral.

35. B
$$4\cos\left(x+\frac{\pi}{3}\right) = 4\left(\cos x \cdot \cos\left(\frac{\pi}{3}\right) - \sin x \cdot \sin\left(\frac{\pi}{3}\right)\right)$$

$$=4\left(\cos x \cdot \frac{1}{2} - \sin x \cdot \frac{\sqrt{3}}{2}\right) = 2\cos x - 2\sqrt{3}\sin x$$

36. C
$$3x - x^2 = x(3 - x) > 0$$
 for $0 < x < 3$
Average value $= \frac{1}{3} \int_0^3 (3x - x^2) dx = \frac{1}{3} \left(\frac{3}{2}x^2 - \frac{1}{3}x^3\right) \Big|_0^3 = \frac{3}{2}$

37. D Since $e^x > 0$ for all x, the zeros of f(x) are the zeros of $\sin x$, so $x = 0, \pi, 2\pi$.

38. E
$$\int \left(\frac{1}{x}\int_{1}^{x}\frac{du}{u}\right)dx = \int \frac{1}{x}\ln x \, dx = \int \ln x \left(\frac{dx}{x}\right)$$
. This is $\int u \, du$ with $u = \ln x$, so the value is $\frac{(\ln x)^{2}}{2} + C$

39. E
$$\int_{3}^{10} f(x) dx = -\int_{10}^{3} f(x) dx; \quad \int_{1}^{3} f(x) dx = \int_{1}^{10} f(x) dx - \int_{3}^{10} f(x) dx = 4 - (-7) = 11$$

40. B $x^2 + y^2 = z^2$, take the derivative of both sides with respect to t. $2x \cdot \frac{dx}{dt} + 2y \cdot \frac{dy}{dt} = 2z \cdot \frac{dz}{dt}$ Divide by 2 and substitute: $4 \cdot \frac{dx}{dt} + 3 \cdot \frac{1}{3} \frac{dx}{dt} = 5 \cdot 1 \Rightarrow \frac{dx}{dt} = 1$

41. A The statement makes no claim as to the behavior of f at x = 3, only the value of f for input arbitrarily close to x = 3. None of the statements are true.

42. C
$$\lim_{x \to \infty} \frac{x}{x+1} = \lim_{x \to \infty} \frac{\frac{x}{x}}{\frac{x}{x}+\frac{1}{x}} = \lim_{x \to \infty} \frac{1}{1+\frac{1}{x}} = 1.$$

None of the other functions have a limit of 1 as $x \to \infty$

43. B The cross-sections are disks with radius r = y where $y = \frac{1}{3}\sqrt{9-x^2}$.

Volume =
$$\pi \int_{-3}^{3} y^2 dx = 2\pi \int_{0}^{3} \frac{1}{9} (9 - x^2) dx = \frac{2\pi}{9} (9x - \frac{1}{3}x^3) \Big|_{0}^{3} = 4\pi$$

44. C For I:
$$p(-x) = f(g(-x)) = f(-g(x)) = -f(g(x)) = -p(x) \Rightarrow p \text{ is odd.}$$

For II: $r(-x) = f(-x) + g(-x) = -f(x) - g(x) = -(f(x) + g(x)) = -r(x) \Rightarrow r \text{ is odd.}$
For III: $s(-x) = f(-x) \cdot g(-x) = (-f(x)) \cdot (-g(x)) = f(x) \cdot g(x) = s(x) \Rightarrow s \text{ is not odd.}$

45. D Volume =
$$\pi r^2 h = 16\pi \Rightarrow h = 16r^{-2}$$
. $A = 2\pi rh + 2\pi r^2 = 2\pi (16r^{-1} + r^2)$

$$\frac{dA}{dr} = 2\pi \left(-16r^{-2} + 2r \right) = 4\pi r^{-2} \left(-8 + r^3 \right); \quad \frac{dA}{dr} < 0 \text{ for } 0 < r < 2 \text{ and } \frac{dA}{dr} > 0 \text{ for } r > 2$$

The minimum surface area of the can is when $r = 2 \Longrightarrow h = 4$.