90 Minutes-No Calculator

Note: In this examination, ln *x* denotes the natural logarithm of *x* (that is, logarithm to the base *e*).

1. The asymptotes of the graph of the parametric equations $x = \frac{1}{t}$, $y = \frac{t}{t+1}$ are (A) x = 0, y = 0 (B) x = 0 only (C) x = -1, y = 0(D) x = -1 only (E) x = 0, y = 1

2. What are the coordinates of the inflection point on the graph of $y = (x+1) \arctan x$?

(A)	(-1,0)	(B)	(0, 0)	(C)	(0,1)	(D)	$\left(1,\frac{\pi}{4}\right)$	(E)	$\left(1,\frac{\pi}{2}\right)$
-----	--------	-----	--------	-----	-------	-----	--------------------------------	-----	--------------------------------

- 3. The Mean Value Theorem guarantees the existence of a special point on the graph of $y = \sqrt{x}$ between (0,0) and (4,2). What are the coordinates of this point?
 - (A) (2,1)
 - (B) (1,1)
 - (C) $\left(2,\sqrt{2}\right)$

(D)
$$\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$$

(E) None of the above

4.
$$\int_{0}^{8} \frac{dx}{\sqrt{1+x}} =$$
(A) 1 (B) $\frac{3}{2}$ (C) 2 (D) 4 (E) 6
5. If $3x^{2} + 2xy + y^{2} = 2$, then the value of $\frac{dy}{dx}$ at $x = 1$ is
(A) -2 (B) 0 (C) 2 (D) 4 (E) not defined

Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.

1969 AP Calculus BC: Section I
6. What is
$$\lim_{h\to 0} \frac{8(\frac{1}{2}+h)^8 - 8(\frac{1}{2})^8}{h}$$
?
(A) 0 (B) $\frac{1}{2}$ (C) 1 (D) The limit does not exist.
(E) It cannot be determined from the information given.
7. For what value of k will $x + \frac{k}{x}$ have a relative maximum at $x = -2$?
(A) -4 (B) -2 (C) 2 (D) 4 (E) None of these
8. If $h(x) = f^2(x) - g^2(x)$, $f'(x) = -g(x)$, and $g'(x) = f(x)$, then $h'(x) =$
(A) 0 (B) 1 (C) $-4f(x)g(x)$
(D) $(-g(x))^2 - (f(x))^2$ (E) $-2(-g(x) + f(x))$
9. The area of the closed region bounded by the polar graph of $r = \sqrt{3 + \cos \theta}$ is given by the integral
(A) $\int_0^{2\pi} \sqrt{3 + \cos \theta} d\theta$ (B) $\int_0^{\pi} \sqrt{3 + \cos \theta} d\theta$ (C) $2\int_0^{\pi/2} (3 + \cos \theta) d\theta$
(D) $\int_0^{\pi} (3 + \cos \theta) d\theta$ (E) $2\int_0^{\pi/2} \sqrt{3 + \cos \theta} d\theta$

10.
$$\int_{0}^{1} \frac{x^{2}}{x^{2} + 1} dx =$$

(A) $\frac{4 - \pi}{4}$ (B) $\ln 2$ (C) 0 (D) $\frac{1}{2} \ln 2$ (E) $\frac{4 + \pi}{4}$

11. The point <u>on the curve</u> $x^2 + 2y = 0$ that is nearest the point $\left(0, -\frac{1}{2}\right)$ occurs where y is

- (A) $\frac{1}{2}$
- (B) 0
- (C) $-\frac{1}{2}$
- (D) -1
- (E) none of the above

12. If
$$F(x) = \int_0^x e^{-t^2} dt$$
, then $F'(x) =$
(A) $2xe^{-x^2}$
(B) $-2xe^{-x^2}$
(C) $\frac{e^{-x^2+1}}{-x^2+1} - e$
(D) $e^{-x^2} - 1$
(E) e^{-x^2}

13. The region bounded by the *x*-axis and the part of the graph of $y = \cos x$ between $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$ is separated into two regions by the line x = k. If the area of the region for $-\frac{\pi}{2} \le x \le k$ is three times the area of the region for $k \le x \le \frac{\pi}{2}$, then k =

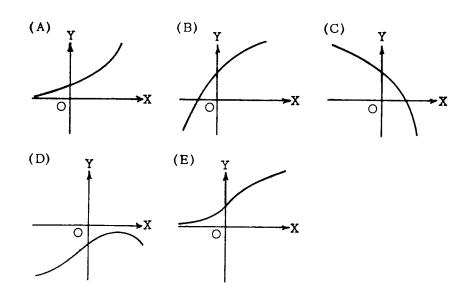
(A)
$$\arcsin\left(\frac{1}{4}\right)$$
 (B) $\arcsin\left(\frac{1}{3}\right)$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$ (E) $\frac{\pi}{3}$

14. If
$$y = x^2 + 2$$
 and $u = 2x - 1$, then $\frac{dy}{du} =$

(A)
$$\frac{2x^2 - 2x + 4}{(2x - 1)^2}$$
 (B) $6x^2 - 2x + 4$ (C) x^2

(D) x (E)
$$\frac{1}{x}$$

- 15. If f'(x) and g'(x) exist and f'(x) > g'(x) for all real x, then the graph of y = f(x) and the graph of y = g(x)
 - (A) intersect exactly once.
 - (B) intersect no more than once.
 - (C) do not intersect.
 - (D) could intersect more than once.
 - (E) have a common tangent at each point of intersection.
- 16. If y is a function x such that y' > 0 for all x and y'' < 0 for all x, which of the following could be part of the graph of y = f(x)?



- 17. The graph of $y = 5x^4 x^5$ has a point of inflection at
 - (A) (0,0) only(B) (3,162) only(C) (4,256) only(D) (0,0) and (3,162)(E) (0,0) and (4,256)

18. If f(x) = 2 + |x-3| for all x, then the value of the derivative f'(x) at x = 3 is

(A) -1 (B) 0 (C) 1 (D) 2 (E) nonexistent

19. A point moves on the *x*-axis in such a way that its velocity at time t (t > 0) is given by $v = \frac{\ln t}{t}$. At what value of *t* does *v* attain its maximum?

- (A) 1 (B) $e^{\frac{1}{2}}$ (C) e (D) $e^{\frac{3}{2}}$
- (E) There is no maximum value for v.

20. An equation for a tangent to the graph of $y = \arcsin \frac{x}{2}$ at the origin is (A) x-2y=0 (B) x-y=0 (C) x=0(D) y=0 (E) $\pi x-2y=0$

21. At x = 0, which of the following is true of the function f defined by $f(x) = x^2 + e^{-2x}$?

- (A) f is increasing.
- (B) f is decreasing.
- (C) f is discontinuous.
- (D) f has a relative minimum.
- (E) f has a relative maximum.

22. If $f(x) = \int_0^x \frac{1}{\sqrt{t^3 + 2}} dt$, which of the following is FALSE?

- (A) f(0) = 0
- (B) f is continuous at x for all $x \ge 0$.
- (C) f(1) > 0

(D)
$$f'(1) = \frac{1}{\sqrt{3}}$$

(E)
$$f(-1) > 0$$

(E)

 $\csc x$

23. If the graph of y = f(x) contains the point $(0, 2), \frac{dy}{dx} = \frac{-x}{ye^{x^2}}$ and f(x) > 0 for all x, then $f(x) = \frac{1}{ye^{x^2}}$

(A) $3+e^{-x^2}$ (B) $\sqrt{3}+e^{-x}$ (C) $1+e^{-x}$ (D) $\sqrt{3+e^{-x^2}}$ (E) $\sqrt{3+e^{x^2}}$

24. If $\sin x = e^y$, $0 < x < \pi$, what is $\frac{dy}{dx}$ in terms of x? (A) $-\tan x$ (B) $-\cot x$ (C) $\cot x$ (D) $\tan x$

25. A region in the plane is bounded by the graph of $y = \frac{1}{x}$, the *x*-axis, the line x = m, and the line x = 2m, m > 0. The area of this region

- (A) is independent of m.
- (B) increases as *m* increases.
- (C) decreases as *m* increases.
- (D) decreases as *m* increases when $m < \frac{1}{2}$; increases as *m* increases when $m > \frac{1}{2}$.
- (E) increases as *m* increases when $m < \frac{1}{2}$; decreases as *m* increases when $m > \frac{1}{2}$.

26. $\int_0^1 \sqrt{x^2 - 2x + 1} \, dx$ is

(A) -1

(B)
$$-\frac{1}{2}$$

- (D) 1
- (E) none of the above

27.	If $\frac{dy}{dx} = \tan x$, then $y =$								
	(A) $\frac{1}{2}\tan^2 x + C$	(B) $\sec^2 x + C$	(C) $\ln \sec x + C$						
	(D) $\ln \cos x + C$	(E) $\sec x \tan x + C$							
28.	What is $\lim_{x \to 0} \frac{e^{2x} - 1}{\tan x}$?								
	(A) -1 (B) 0 ((C) 1 (D) 2 (E) Th	e limit does not exist.						
29.	$\int_{0}^{1} \left(4 - x^{2}\right)^{-\frac{3}{2}} dx =$								
	(A) $\frac{2-\sqrt{3}}{3}$ (B) $\frac{2\sqrt{3}-3}{4}$	(C) $\frac{\sqrt{3}}{12}$ (D) $\frac{\sqrt{3}}{3}$	(E) $\frac{\sqrt{3}}{2}$						
30.	$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}$ is the Taylor series about zero for which of the following functions?								
	(A) $\sin x$ (B) $\cos x$	(C) e^x (D) e^{-x}	(E) $\ln(1+x)$						
31.	If $f'(x) = -f(x)$ and $f(1) = 1$, then $f(x) =$								
	(A) $\frac{1}{2}e^{-2x+2}$ (B) e^{-x-1}	(C) e^{1-x} (D) e^{-x}	(E) $-e^x$						
32.	For what values of x does the series $1+2^x+3^x+4^x+\dots+n^x+\dots$ converge?								
	(A) No values of x (B) $x < -$	-1 (C) $x \ge -1$ (D) $x > -1$	(E) All values of x						
33.	What is the average (mean) value of $3t^3 - t^2$ over the interval $-1 \le t \le 2$?								
	(A) $\frac{11}{4}$ (B) $\frac{7}{2}$	(C) 8 (D) $\frac{33}{4}$	(E) 16						

AP Calculus Multiple-Choice Question Collection

Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.

34. Which of the following is an equation of a curve that intersects at right angles every curve of the family $y = \frac{1}{x} + k$ (where *k* takes all real values)?

(A)
$$y = -x$$
 (B) $y = -x^2$ (C) $y = -\frac{1}{3}x^3$ (D) $y = \frac{1}{3}x^3$ (E) $y = \ln x$

- 35. At t = 0 a particle starts at rest and moves along a line in such a way that at time t its acceleration is $24t^2$ feet per second per second. Through how many feet does the particle move during the first 2 seconds?
 - (A) 32 (B) 48 (C) 64 (D) 96 (E) 192
- 36. The approximate value of $y = \sqrt{4 + \sin x}$ at x = 0.12, obtained from the tangent to the graph at x = 0, is
 - (A) 2.00 (B) 2.03 (C) 2.06 (D) 2.12 (E) 2.24

37. Of the following choices of δ , which is the <u>largest</u> that could be used successfully with an arbitrary ε in an epsilon-delta proof of $\lim_{x\to 2} (1-3x) = -5$?

(A) $\delta = 3\epsilon$ (B) $\delta = \epsilon$ (C) $\delta = \frac{\epsilon}{2}$ (D) $\delta = \frac{\epsilon}{4}$ (E) $\delta = \frac{\epsilon}{5}$

38. If
$$f(x) = (x^2 + 1)^{(2-3x)}$$
, then $f'(1) =$

(A)
$$-\frac{1}{2}\ln(8e)$$
 (B) $-\ln(8e)$ (C) $-\frac{3}{2}\ln(2)$ (D) $-\frac{1}{2}$ (E) $\frac{1}{8}$

39. If
$$y = \tan u$$
, $u = v - \frac{1}{v}$, and $v = \ln x$, what is the value of $\frac{dy}{dx}$ at $x = e$?

(A) 0 (B) $\frac{1}{e}$ (C) 1 (D) $\frac{2}{e}$ (E) $\sec^2 e$

40. If *n* is a non-negative integer, then
$$\int_{0}^{1} x^{n} dx = \int_{0}^{1} (1-x)^{n} dx$$
 for
(A) no *n* (B) *n* even, only (C) *n* odd, only
(D) nonzero *n*, only (E) all *n*
41. If $\begin{cases} f(x) = 8 - x^{2} & \text{for } -2 \le x \le 2, \\ f(x) = x^{2} & \text{elsewhere}, \end{cases}$ then $\int_{-1}^{3} f(x) dx$ is a number between
(A) 0 and 8 (B) 8 and 16 (C) 16 and 24 (D) 24 and 32 (E) 32 and 40
42. If $\int x^{2} \cos x dx = f(x) - \int 2x \sin x dx$, then $f(x) =$
(A) $2 \sin x + 2x \cos x + C$
(B) $x^{2} \sin x + C$
(C) $2x \cos x - x^{2} \sin x + C$
(D) $4 \cos x - 2x \sin x + C$
(E) $(2-x^{2}) \cos x - 4 \sin x + C$

43. Which of the following integrals gives the length of the graph of $y = \tan x$ between x = a and x = b, where $0 < a < b < \frac{\pi}{2}$?

(A)
$$\int_{a}^{b} \sqrt{x^{2} + \tan^{2} x} dx$$

(B)
$$\int_{a}^{b} \sqrt{x + \tan x} dx$$

(C)
$$\int_{a}^{b} \sqrt{1 + \sec^{2} x} dx$$

(D)
$$\int_{a}^{b} \sqrt{1 + \tan^{2} x} dx$$

(E)
$$\int_{a}^{b} \sqrt{1 + \sec^4 x} \, dx$$

44. If f''(x) - f'(x) - 2f(x) = 0, f'(0) = -2, and f(0) = 2, then f(1) =(A) $e^2 + e^{-1}$ (B) 1 C) 0 (D) e^2 (E) $2e^{-1}$ 45. The complete interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x+1)^k}{k^2}$ is (A) 0 < x < 2 (B) $0 \le x \le 2$ (C) $-2 < x \le 0$ (D) $-2 \le x < 0$ (E) $-2 \le x \le 0$ 1. C For horizontal asymptotes consider the limit as $x \to \pm \infty$: $t \to 0 \Rightarrow y = 0$ is an asymptote For vertical asymptotes consider the limit as $y \to \pm \infty$: $t \to -1 \Rightarrow x = -1$ is an asymptote

2. E
$$y = (x+1)\tan^{-1}x$$
, $y' = \frac{x+1}{1+x^2} + \tan^{-1}x$

$$y'' = \frac{(1+x^2)(1) - (x+1)(2x)}{(1+x^2)^2} + \frac{1}{1+x^2} = \frac{2-2x}{(1+x^2)^2}$$

y" changes sign at x = 1 only. The point of inflection is $\left(1, \frac{\pi}{2}\right)$

3. B
$$y = \sqrt{x}$$
, $y' = \frac{1}{2\sqrt{x}}$. By the Mean Value Theorem we have $\frac{1}{2\sqrt{c}} = \frac{2}{4} \Rightarrow c = 1$.

The point is (1,1).

4. D
$$\int_0^8 \frac{dx}{\sqrt{1+x}} dx = 2\sqrt{1+x} \Big|_0^8 = 2(3-1) = 4$$

5. E Using implicit differentiation, $6x + 2xy' + 2y + 2y \cdot y' = 0$. Therefore $y' = \frac{-2y - 6x}{2x + 2y}$. When x = 1, $3 + 2y + y^2 = 2 \Rightarrow 0 = y^2 + 2y + 1 = (y+1)^2 \Rightarrow y = -1$ Therefore 2x + 2y = 0 and so $\frac{dy}{dx}$ is not defined at x = 1.

6. B This is the derivative of
$$f(x) = 8x^8$$
 at $x = \frac{1}{2}$.
$$f'\left(\frac{1}{2}\right) = 64\left(\frac{1}{2}\right)^7 = \frac{1}{2}$$

7. D With $f(x) = x + \frac{k}{x}$, we need $0 = f'(-2) = 1 - \frac{k}{4}$ and so k = 4. Since f''(-2) < 0 for k = 4, f does have a relative maximum at x = -2.

8. C
$$h'(x) = 2f(x) \cdot f'(x) - 2g(x) \cdot g'(x) = 2f(x) \cdot (-g(x)) - 2g(x) \cdot f(x) = -4f(x) \cdot g(x)$$

9. D
$$A = \frac{1}{2} \int_0^{2\pi} \left(\sqrt{3} + \cos\theta\right)^2 d\theta = 2 \cdot \frac{1}{2} \int_0^{\pi} \left(\sqrt{3} + \cos\theta\right)^2 d\theta = \int_0^{\pi} \left(3 + \cos\theta\right) d\theta$$

10. A
$$\int_{0}^{1} \frac{x^{2}}{x^{2}+1} dx = \int_{0}^{1} \frac{x^{2}+1-1}{x^{2}+1} dx = \int_{0}^{1} \left(\frac{x^{2}+1}{x^{2}+1} - \frac{1}{x^{2}+1}\right) dx = \left(x - \tan^{-1} x\right) \Big|_{0}^{1} = 1 - \frac{\pi}{4} = \frac{4 - \pi}{4}$$

11. B Let *L* be the distance from
$$\left(x, -\frac{x^2}{2}\right)$$
 and $\left(0, -\frac{1}{2}\right)$.

$$L^{2} = (x-0)^{2} + \left(\frac{x^{2}}{2} - \frac{1}{2}\right)^{2}$$
$$2L \cdot \frac{dL}{dx} = 2x + 2\left(\frac{x^{2}}{2} - \frac{1}{2}\right)(x)$$
$$\frac{dL}{dx} = \frac{2x + 2\left(\frac{x^{2}}{2} - \frac{1}{2}\right)(x)}{2L} = \frac{2x + x^{3} - x}{2L} = \frac{x^{3} + x}{2L} = \frac{x\left(x^{2} + 1\right)}{2L}$$

 $\frac{dL}{dx} < 0$ for all x < 0 and $\frac{dL}{dx} > 0$ for all x > 0, so the minimum distance occurs at x = 0.

The nearest point is the origin.

12. E By the Fundamental Theorem of Calculus, if $F(x) = \int_0^x e^{-t^2} dt$ then $F'(x) = e^{-x^2}$.

13. C
$$\int_{-\pi/2}^{k} \cos x \, dx = 3 \int_{k}^{\pi/2} \cos x \, dx; \ \sin k - \sin\left(-\frac{\pi}{2}\right) = 3\left(\sin\frac{\pi}{2} - \sin k\right)$$

$$\sin k + 1 = 3 - 3\sin k; \ 4\sin k = 2 \Longrightarrow k = \frac{\pi}{6}$$

14. D
$$y = x^2 + 2$$
 and $u = 2x - 1$, $\frac{dy}{du} = \frac{dy}{dx} \cdot \frac{dx}{du} = (2x)\left(\frac{1}{2}\right) = x$

15. B The graphs do not need to intersect (eg. $f(x) = -e^{-x}$ and $g(x) = e^{-x}$). The graphs could intersect (e.g. f(x) = 2x and g(x) = x). However, if they do intersect, they will intersect no more than once because f(x) grows faster than g(x).

- 16. B $y' > 0 \Rightarrow y$ is increasing; $y'' < 0 \Rightarrow$ the graph is concave down. Only B meets these conditions.
- 17. B $y' = 20x^3 5x^4$, $y'' = 60x^2 20x^3 = 20x^2(3-x)$. The only sign change in y'' is at x = 3. The only point of inflection is (3,162).
- 18. E There is no derivative at the vertex which is located at x = 3.

19. C
$$\frac{dv}{dt} = \frac{1 - \ln t}{t^2} > 0$$
 for $0 < t < e$ and $\frac{dv}{dt} < 0$ for $t > e$, thus v has its maximum at $t = e$.

20. A
$$y(0) = 0$$
 and $y'(0) = \frac{1/2}{\sqrt{1 - \frac{x^2}{4}}} \Big|_{x=0} = \frac{1}{\sqrt{4 - x^2}} \Big|_{x=0} = \frac{1}{2}$. The tangent line is $y = \frac{1}{2}x \Rightarrow x - 2y = 0$.

21. B
$$f'(x) = 2x - 2e^{-2x}$$
, $f'(0) = -2$, so f is decreasing

22. E
$$f(x) = \int_0^x \frac{1}{\sqrt{t^3 + 2}} dt$$
, $f(-1) = \int_0^{-1} \frac{1}{\sqrt{t^3 + 2}} dt = -\int_{-1}^0 \frac{1}{\sqrt{t^3 + 2}} dt < 0$
 $f(-1) < 0$ so E is false.

23. D
$$\frac{dy}{dx} = \frac{-xe^{-x^2}}{y} \Longrightarrow 2y \, dy = -2xe^{-x^2} \, dx \Longrightarrow y^2 = e^{-x^2} + C$$
$$4 = 1 + C \Longrightarrow C = 3; \quad y^2 = e^{-x^2} + 3 \Longrightarrow y = \sqrt{e^{-x^2} + 3}$$

24. C
$$y = \ln \sin x, y' = \frac{\cos x}{\sin x} = \cot x$$

25. A
$$\int_{m}^{2m} \frac{1}{x} dx = \ln x \Big|_{m}^{2m} = \ln (2m) - \ln (m) = \ln 2$$
 so the area is independent of m.

26. C
$$\int_{0}^{1} \sqrt{x^{2} - 2x + 1} \, dx = \int_{0}^{1} |x - 1| \, dx = \int_{0}^{1} -(x - 1) \, dx = -\frac{1}{2} (x - 1)^{2} \Big|_{0}^{1} = \frac{1}{2}$$

Alternatively, the graph of the region is a right triangle with vertices at (0,0), (0,1), and (1,0)
The area is $\frac{1}{2}$.

27. C
$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\ln|\cos x| + C = \ln|\sec x| + C$$

28. D Use L'Hôpital's Rule:
$$\lim_{x \to 0} \frac{e^{2x} - 1}{\tan x} = \lim_{x \to 0} \frac{2e^{2x}}{\sec^2 x} = 2$$

29.

C Make the substitution
$$x = 2\sin\theta \Rightarrow dx = 2\cos\theta d\theta$$
.
$$\int_{0}^{1} (4-x^{2})^{-\frac{3}{2}} dx = \int_{0}^{\frac{\pi}{6}} \frac{2\cos\theta}{8\cos^{3}\theta} d\theta = \frac{1}{4} \int_{0}^{\frac{\pi}{6}} \sec^{2}\theta d\theta = \frac{1}{4}\tan\theta \Big|_{0}^{\frac{\pi}{6}} = \frac{1}{4} \cdot \frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{12}$$

30. D Substitute
$$-x$$
 for x in $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$ to get $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = e^{-x}$

31. C
$$\frac{dy}{dx} = -y \Rightarrow y = ce^{-x}$$
 and $1 = ce^{-1} \Rightarrow c = e; y = e \cdot e^{-x} = e^{1-x}$

32. B $1+2^x+3^x+4^x+\dots+n^x+\dots=\sum_{n=1}^{\infty}\frac{1}{n^p}$ where p=-x. This is a *p*-series and is convergent if $p>1 \Longrightarrow -x>1 \Longrightarrow x<-1$.

33. A
$$\frac{1}{3}\int_{-1}^{2} 3t^3 - t^2 dt = \frac{1}{3}\left(\frac{3}{4}t^4 - \frac{1}{3}t^3\right)\Big|_{-1}^{2} = \frac{1}{3}\left(\left(12 - \frac{8}{3}\right) - \left(\frac{3}{4} + \frac{1}{3}\right)\right) = \frac{11}{4}$$

34. D
$$y' = -\frac{1}{x^2}$$
, so the desired curve satisfies $y' = x^2 \Longrightarrow y = \frac{1}{3}x^3 + C$

35. A
$$a(t) = 24t^2$$
, $v(t) = 8t^3 + C$ and $v(0) = 0 \Rightarrow C = 0$. The particle is always moving to the right, so distance $= \int_0^2 8t^3 dt = 2t^4 \Big|_0^2 = 32$.

36. B
$$y = \sqrt{4 + \sin x}$$
, $y(0) = 2$, $y'(0) = \frac{\cos 0}{2\sqrt{4 + \sin 0}} = \frac{1}{4}$. The linear approximation to y is
 $L(x) = 2 + \frac{1}{4}x$. $L(1.2) = 2 + \frac{1}{4}(1.2) = 2.03$

- 37. D This item uses the formal definition of a limit and is no longer part of the AP Course Description. Need to have $|(1-3x)-(-5)| < \varepsilon$ whenever $0 < |x-2| < \delta$. $|(1-3x)-(-5)| = |6-3x| = 3|x-2| < \varepsilon$ if $|x-2| < \varepsilon/3$. Thus we can use any $\delta < \varepsilon/3$. Of the five choices, the largest satisfying this condition is $\delta = \varepsilon/4$.
- 38. A Note $f(1) = \frac{1}{2}$. Take the natural logarithm of each side of the equation and then differentiate.

$$\ln f(x) = (2 - 3x) \ln \left(x^2 + 1\right); \quad \frac{f'(x)}{f(x)} = (2 - 3x) \cdot \frac{2x}{x^2 + 1} - 3\ln \left(x^2 + 1\right)$$
$$f'(1) = f(1) \left((-1) \cdot \frac{2}{2} - 3\ln(2)\right) \Longrightarrow f'(1) = \frac{1}{2} \left(-1 - 3\ln 2\right) = -\frac{1}{2} \left(\ln e + \ln 2^3\right) = -\frac{1}{2} \ln 8e$$
$$D = x = a \Longrightarrow x = 1, \quad x = 0, \quad y = 0; \quad \frac{dy}{dy} = \frac{dy}{du} = \frac{dy}{du} = \left(\cos^2 u\right) \left(1 + \frac{1}{2}\right) \left(\frac{1}{2}\right) = (1)(2) \left(e^{-1}\right) = \frac{2}{2}$$

39. D
$$x = e \Rightarrow v = 1, u = 0, y = 0; \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} = \left(\sec^2 u\right) \left(1 + \frac{1}{v^2}\right) \left(\frac{1}{x}\right) = (1)(2) \left(e^{-1}\right) = \frac{2}{e}$$

40. E One solution technique is to evaluate each integral and note that the value is $\frac{1}{n+1}$ for each.

Another technique is to use the substitution u = 1 - x; $\int_0^1 (1 - x)^n dx = \int_1^0 u^n (-du) = \int_0^1 u^n du$. Integrals do not depend on the variable that is used and so $\int_0^1 u^n du$ is the same as $\int_0^1 x^n dx$.

41. D
$$\int_{-1}^{3} f(x) dx = \int_{-1}^{2} \left(8 - x^{2}\right) dx + \int_{2}^{3} x^{2} dx = \left(8x - \frac{1}{3}x^{3}\right)\Big|_{-1}^{2} + \frac{1}{3}x^{3}\Big|_{2}^{3} = 27\frac{1}{3}$$

42. B Use the technique of antiderivatives by parts to evaluate $\int x^2 \cos x \, dx$

$$u = x^{2} \qquad dv = \cos x \, dx$$

$$du = 2x \, dx \qquad v = \sin x$$

$$f(x) - \int 2x \sin x \, dx = \int x^{2} \cos x \, dx = x^{2} \sin x - \int 2x \sin x \, dx + C$$

$$f(x) = x^{2} \sin x + C$$

43. E
$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{a}^{b} \sqrt{1 + \left(\sec^{2} x\right)^{2}} dx = \int_{a}^{b} \sqrt{1 + \sec^{4} x} dx$$

44. E
$$y'' - y' - 2y = 0$$
, $y'(0) = -2$, $y(0) = 2$; the characteristic equation is $r^2 - r - 2 = 0$

The solutions are r = -1, r = 2 so the general solution to the differential equation is

$$y = c_1 e^{-x} + c_2 e^{2x}$$
 with $y' = -c_1 e^{-x} + 2c_2 e^{2x}$. Using the initial conditions we have the system:
 $2 = c_1 + c_2$ and $-2 = -c_1 + 2c_2 \Rightarrow c_2 = 0$, $c_1 = 2$. The solution is $f(x) = 2e^{-x} \Rightarrow f(1) = 2e^{-1}$.

45. E The ratio test shows that the series is convergent for any value of x that makes |x+1| < 1. The solutions to |x+1| = 1 are the endpoints of the interval of convergence. Test x = -2 and

> x = 0 in the series. The resulting series are $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}$ and $\sum_{k=1}^{\infty} \frac{1}{k^2}$ which are both convergent. The interval is $-2 \le x \le 0$.