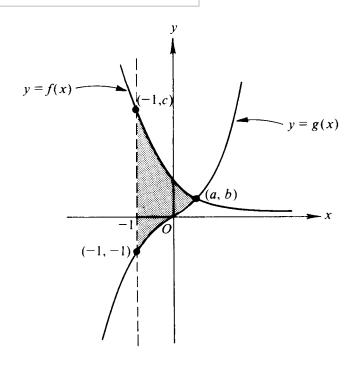
90 Minutes—No Calculator

Notes: (1) In this examination, ln x denotes the natural logarithm of x (that is, logarithm to the base e).

- (2) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f(x) is a real number.
- The area of the region between the graph of $y = 4x^3 + 2$ and the x-axis from x = 1 to x = 2 is 1.
 - (A) 36
- (B) 23
- (C) 20
- (D) 17
- (E) 9
- At what values of x does $f(x) = 3x^5 5x^3 + 15$ have a relative maximum?
 - (A) -1 only
- (B) 0 only
- (C) 1 only
- (D) -1 and 1 only
- (E) -1, 0 and 1

- 3. $\int_{1}^{2} \frac{x+1}{x^2+2x} dx =$
 - (A) $\ln 8 \ln 3$
- (B) $\frac{\ln 8 \ln 3}{2}$ (C) $\ln 8$
- (D) $\frac{3 \ln 2}{2}$ (E) $\frac{3 \ln 2 + 2}{2}$
- A particle moves in the xy-plane so that at any time t its coordinates are $x = t^2 1$ and $y = t^4 2t^3$. 4. At t = 1, its acceleration vector is
- (A) (0,-1) (B) (0,12) (C) (2,-2) (D) (2,0)
- (E) (2,8)



- The curves y = f(x) and y = g(x) shown in the figure above intersect at the point (a,b). The 5. area of the shaded region enclosed by these curves and the line x = -1 is given by
 - (A) $\int_0^a (f(x) g(x)) dx + \int_{-1}^0 (f(x) + g(x)) dx$
 - (B) $\int_{-1}^{b} g(x) dx + \int_{b}^{c} f(x) dx$
 - (C) $\int_{-1}^{c} (f(x) g(x)) dx$
 - (D) $\int_{-1}^{a} (f(x) g(x)) dx$
 - (E) $\int_{-1}^{a} (|f(x)| |g(x)|) dx$
- 6. If $f(x) = \frac{x}{\tan x}$, then $f'\left(\frac{\pi}{4}\right) =$

- (C) $1 + \frac{\pi}{2}$ (D) $\frac{\pi}{2} 1$ (E) $1 \frac{\pi}{2}$

- Which of the following is equal to $\int \frac{1}{\sqrt{25-x^2}} dx$? 7.
 - (A) $\arcsin \frac{x}{5} + C$

(B) $\arcsin x + C$

(C) $\frac{1}{5}\arcsin\frac{x}{5} + C$

(D) $\sqrt{25-x^2}+C$

- (E) $2\sqrt{25-x^2} + C$
- If f is a function such that $\lim_{x\to 2} \frac{f(x)-f(2)}{x-2} = 0$, which of the following must be true?
 - The limit of f(x) as x approaches 2 does not exist.
 - f is not defined at x = 2.
 - The derivative of f at x = 2 is 0. (C)
 - f is continuous at x = 0.
 - (E) f(2) = 0
- If $xy^2 + 2xy = 8$, then, at the point (1, 2), y' is

 - (A) $-\frac{5}{2}$ (B) $-\frac{4}{3}$ (C) -1
- (E) 0

- 10. For -1 < x < 1 if $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{2n-1}$, then $f'(x) = \frac{1}{2n-1}$
 - (A) $\sum_{n=1}^{\infty} (-1)^{n+1} x^{2n-2}$
 - (B) $\sum_{n=1}^{\infty} (-1)^n x^{2n-2}$
 - (C) $\sum_{n=1}^{\infty} (-1)^{2n} x^{2n}$
 - (D) $\sum_{n=1}^{\infty} (-1)^n x^{2n}$
 - (E) $\sum_{n=1}^{\infty} (-1)^{n+1} x^{2n}$

$$11. \quad \frac{d}{dx} \ln \left(\frac{1}{1-x} \right) =$$

- (A) $\frac{1}{1-r}$ (B) $\frac{1}{r-1}$

- (C) 1-x (D) x-1 (E) $(1-x)^2$

$$12. \quad \int \frac{dx}{(x-1)(x+2)} =$$

- (A) $\frac{1}{3} \ln \left| \frac{x-1}{x+2} \right| + C$
- (B) $\frac{1}{3} \ln \left| \frac{x+2}{x-1} \right| + C$
 - (C) $\frac{1}{3} \ln |(x-1)(x+2)| + C$

- (D) $(\ln |x-1|)(\ln |x+2|) + C$ (E) $\ln |(x-1)(x+2)^2| + C$
- 13. Let f be the function given by $f(x) = x^3 3x^2$. What are all values of c that satisfy the conclusion of the Mean Value Theorem of differential calculus on the closed interval [0,3]?
 - (A) 0 only
- (B) 2 only
- (C) 3 only
- (D) 0 and 3
- 2 and 3 (E)

14. Which of the following series are convergent?

I.
$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

II.
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

III.
$$1 - \frac{1}{3} + \frac{1}{3^2} - \dots + \frac{(-1)^{n+1}}{3^{n-1}} + \dots$$

- (A) I only
- (B) III only
- (C) I and III only
- (D) II and III only
- (E) I, II, and III
- 15. If the velocity of a particle moving along the x-axis is v(t) = 2t 4 and if at t = 0 its position is 4, then at any time t its position x(t) is
 - (A) t^2-4t
- (B) $t^2 4t 4$ (C) $t^2 4t + 4$ (D) $2t^2 4t$ (E) $2t^2 4t + 4$

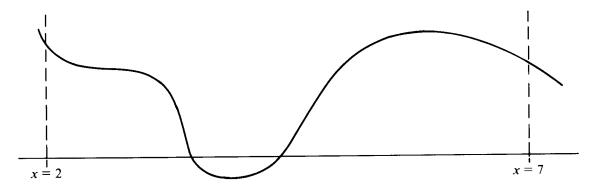
- Which of the following functions shows that the statement "If a function is continuous at x = 0, then it is differentiable at x = 0 " is false?
 - (A) $f(x) = x^{-\frac{4}{3}}$ (B) $f(x) = x^{-\frac{1}{3}}$ (C) $f(x) = x^{\frac{1}{3}}$ (D) $f(x) = x^{\frac{4}{3}}$ (E) $f(x) = x^3$

- 17. If $f(x) = x \ln(x^2)$, then f'(x) =
- (A) $\ln(x^2) + 1$ (B) $\ln(x^2) + 2$ (C) $\ln(x^2) + \frac{1}{r}$ (D) $\frac{1}{r^2}$ (E) $\frac{1}{r}$

- 18. $\int \sin(2x+3) dx =$
- (A) $-2\cos(2x+3)+C$ (B) $-\cos(2x+3)+C$ (C) $-\frac{1}{2}\cos(2x+3)+C$
- (D) $\frac{1}{2}\cos(2x+3)+C$
- (E) $\cos(2x+3)+C$
- 19. If f and g are twice differentiable functions such that $g(x) = e^{f(x)}$ and $g''(x) = h(x)e^{f(x)}$, then h(x) =
 - (A) f'(x) + f''(x)

- (B) $f'(x) + (f''(x))^2$
- (C) $(f'(x) + f''(x))^2$

- (D) $(f'(x))^2 + f''(x)$
- (E) 2f'(x) + f''(x)



- 20. The graph of y = f(x) on the closed interval [2,7] is shown above. How many points of inflection does this graph have on this interval?
 - (A) One
- (B) Two
- (C) Three
- (D) Four
- Five (E)

- 21. If $\int f(x)\sin x \, dx = -f(x)\cos x + \int 3x^2 \cos x \, dx$, then f(x) could be
 - (A) $3x^2$
- (B) x^{3}
- (C) $-x^3$
- (D) $\sin x$
- (E) $\cos x$
- The area of a circular region is increasing at a rate of 96π square meters per second. When the area of the region is 64π square meters, how fast, in meters per second, is the radius of the region increasing?
 - (A) 6
- (B) 8
- (C) 16
- (D) $4\sqrt{3}$
- $12\sqrt{3}$ (E)

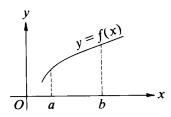
- $\lim_{h \to 0} \frac{\int_{1}^{1+h} \sqrt{x^5 + 8} \, dx}{h} \text{ is}$
 - (A) 0
- (B) 1
- (C) 3
- (D) $2\sqrt{2}$
- (E) nonexistent
- 24. The area of the region enclosed by the polar curve $r = \sin(2\theta)$ for $0 \le \theta \le \frac{\pi}{2}$ is
 - $(A) \quad 0$
- (B) $\frac{1}{2}$

- (D) $\frac{\pi}{8}$ (E) $\frac{\pi}{4}$
- 25. A particle moves along the x-axis so that at any time t its position is given by $x(t) = te^{-2t}$. For what values of t is the particle at rest?

- (A) No values (B) 0 only (C) $\frac{1}{2}$ only (D) 1 only (E) 0 and $\frac{1}{2}$
- 26. For $0 < x < \frac{\pi}{2}$, if $y = (\sin x)^x$, then $\frac{dy}{dx}$ is
 - (A) $x \ln(\sin x)$

- (B) $(\sin x)^x \cot x$
- (C) $x(\sin x)^{x-1}(\cos x)$

- (D) $(\sin x)^x (x \cos x + \sin x)$ (E) $(\sin x)^x (x \cot x + \ln(\sin x))$



- If f is the continuous, strictly increasing function on the interval $a \le x \le b$ as shown above, which of the following must be true?
 - I. $\int_a^b f(x) dx < f(b)(b-a)$
 - II. $\int_{a}^{b} f(x) dx > f(a)(b-a)$
 - III. $\int_{a}^{b} f(x) dx = f(c)(b-a)$ for some number c such that a < c < b
 - (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- (E) I, II, and III

- 28. An antiderivative of $f(x) = e^{x+e^x}$ is

 - (A) $\frac{e^{x+e^x}}{1+e^x}$ (B) $(1+e^x)e^{x+e^x}$ (C) e^{1+e^x}

- 29. $\lim_{x \to \frac{\pi}{4}} \frac{\sin\left(x \frac{\pi}{4}\right)}{x \frac{\pi}{4}} \text{ is}$

 - (A) 0 (B) $\frac{1}{\sqrt{2}}$ (C) $\frac{\pi}{4}$ (D) 1
- (E) nonexistent

- 30. If $x = t^3 t$ and $y = \sqrt{3t+1}$, then $\frac{dy}{dx}$ at t = 1 is
 - (A) $\frac{1}{8}$ (B) $\frac{3}{8}$ (C) $\frac{3}{4}$ (D) $\frac{8}{3}$

- 31. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}$ converges?
 - (A) $-1 \le x < 1$
- (B) $-1 \le x \le 1$ (C) 0 < x < 2 (D) $0 \le x < 2$
- $0 \le x \le 2$

- An equation of the line <u>normal</u> to the graph of $y = x^3 + 3x^2 + 7x 1$ at the point where x = -1 is
 - - 4x + y = -10 (B) x 4y = 23 (C) 4x y = 2

- (D) x + 4y = 25 (E) x + 4y = -25
- 33. If $\frac{dy}{dt} = -2y$ and if y = 1 when t = 0, what is the value of t for which $y = \frac{1}{2}$?
 - (A) $-\frac{\ln 2}{2}$ (B) $-\frac{1}{4}$ (C) $\frac{\ln 2}{2}$ (D) $\frac{\sqrt{2}}{2}$

- (E) ln 2
- Which of the following gives the area of the surface generated by revolving about the y-axis the arc of $x = y^3$ from y = 0 to y = 1?
 - (A) $2\pi \int_{0}^{1} y^{3} \sqrt{1+9y^{4}} dy$
 - (B) $2\pi \int_{0}^{1} y^{3} \sqrt{1+y^{6}} dy$
 - (C) $2\pi \int_{0}^{1} y^{3} \sqrt{1+3y^{2}} dy$
 - (D) $2\pi \int_{0}^{1} y \sqrt{1+9y^4} \, dy$
 - (E) $2\pi \int_{0}^{1} y \sqrt{1+y^{6}} dy$
- The region in the first quadrant between the x-axis and the graph of $y = 6x x^2$ is rotated around 35. the y-axis. The volume of the resulting solid of revolution is given by
 - (A) $\int_{0}^{6} \pi (6x x^{2})^{2} dx$
 - (B) $\int_{0}^{6} 2\pi x (6x x^{2}) dx$
 - (C) $\int_{0}^{6} \pi x (6x x^{2})^{2} dx$
 - (D) $\int_{0}^{6} \pi (3 + \sqrt{9 y})^{2} dy$
 - (E) $\int_{0}^{9} \pi (3 + \sqrt{9 y})^{2} dy$

36.
$$\int_{-1}^{1} \frac{3}{x^2} dx$$
 is

- (A) -6
- (B) -3
- (C) 0
- (D) 6
- (E) nonexistent

- 37. The general solution for the equation $\frac{dy}{dx} + y = xe^{-x}$ is
 - (A) $y = \frac{x^2}{2}e^{-x} + Ce^{-x}$
- (B) $y = \frac{x^2}{2}e^{-x} + e^{-x} + C$
 - (C) $y = -e^{-x} + \frac{C}{1+x}$

(D) $v = x e^{-x} + Ce^{-x}$

(E) $v = C_1 e^x + C_2 x e^{-x}$

- 38. $\lim_{x \to \infty} (1 + 5e^x)^{\frac{1}{x}}$ is
 - (A) 0
- (B) 1
- (C) *e*
- (D) e^{5}
- (E) nonexistent
- The base of a solid is the region enclosed by the graph of $y = e^{-x}$, the coordinate axes, and the line x = 3. If all plane cross sections perpendicular to the x-axis are squares, then its volume is
 - (A) $\frac{\left(1-e^{-6}\right)}{2}$ (B) $\frac{1}{2}e^{-6}$
- (C) e^{-6}
- (E) $1 e^{-3}$
- 40. If the substitution $u = \frac{x}{2}$ is made, the integral $\int_{0}^{4} \frac{1 \left(\frac{x}{2}\right)^{2}}{x} dx = \frac{1 \left(\frac{x}{2}\right)^{2}}{x} dx$
 - (A) $\int_{1}^{2} \frac{1-u^2}{u} du$

(B) $\int_{2}^{4} \frac{1-u^{2}}{u} du$

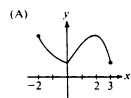
(C) $\int_{1}^{2} \frac{1-u^2}{2u} du$

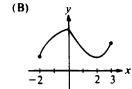
(D) $\int_{1}^{2} \frac{1-u^2}{4u} du$

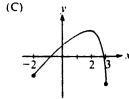
(E) $\int_{2}^{4} \frac{1-u^{2}}{2u} du$

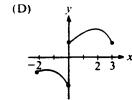
- 41. What is the length of the arc of $y = \frac{2}{3}x^{\frac{3}{2}}$ from x = 0 to x = 3?
 - (A)
- (B) 4
- (C) $\frac{14}{3}$ (D) $\frac{16}{3}$
- (E) 7

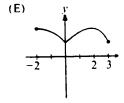
- The coefficient of x^3 in the Taylor series for e^{3x} about x = 0 is
 - (A) $\frac{1}{6}$
- (C) $\frac{1}{2}$ (D) $\frac{3}{2}$
- (E) $\frac{9}{2}$
- 43. Let f be a function that is continuous on the closed interval [-2,3] such that f'(0) does not exist, f'(2) = 0, and f''(x) < 0 for all x except x = 0. Which of the following could be the graph of f?











- 44. At each point (x, y) on a certain curve, the slope of the curve is $3x^2y$. If the curve contains the point (0,8), then its equation is
 - (A) $v = 8e^{x^3}$

(B) $v = x^3 + 8$

(C) $v = e^{x^3} + 7$

(D) $y = \ln(x+1) + 8$

- (E) $y^2 = x^3 + 8$
- 45. If *n* is a positive integer, then $\lim_{n\to\infty} \frac{1}{n} \left| \left(\frac{1}{n} \right)^2 + \left(\frac{2}{n} \right)^2 + \ldots + \left(\frac{3n}{n} \right)^2 \right|$ can be expressed as
 - (A) $\int_{0}^{1} \frac{1}{r^2} dx$

(B) $3\int_0^1 \left(\frac{1}{r}\right)^2 dx$

(C) $\int_0^3 \left(\frac{1}{r}\right)^2 dx$

(D) $\int_0^3 x^2 dx$

(E) $3\int_{0}^{3} x^{2} dx$

1. D
$$\int_0^2 (4x^3 + 2) dx = (x^4 + 2x) \Big|_0^2 = (16 + 4) - (1 + 2) = 17$$

- 2. A $f'(x) = 15x^4 15x^2 = 15x^2(x^2 1) = 15x^2(x 1)(x + 1)$, changes sign from positive to negative only at x = -1. So f has a relative maximum at x = -1 only.
- 3. B $\int_{1}^{2} \frac{x+1}{x^{2}+2x} dx = \frac{1}{2} \int_{1}^{2} \frac{(2x+2)dx}{x^{2}+2x} = \frac{1}{2} \ln |x^{2}+2x||_{1}^{2} = \frac{1}{2} (\ln 8 \ln 3)$
- 4. D $x(t) = t^2 1 \Rightarrow \frac{dx}{dt} = 2t$ and $\frac{d^2x}{dt^2} = 2$; $y(t) = t^4 2t^3 \Rightarrow \frac{dy}{dt} = 4t^3 6t^2$ and $\frac{d^2y}{dt^2} = 12t^2 12t$ $a(t) = \left(\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}\right) = (2, 12t^2 12t) \Rightarrow a(1) = (2, 0)$
- 5. D Area = $\int_{x_1}^{x_2} (\text{top curve bottom curve}) dx$, $x_1 < x_2$; Area = $\int_{-1}^{a} (f(x) g(x)) dx$
- 6. E $f(x) = \frac{x}{\tan x}$, $f'(x) = \frac{\tan x x \sec^2 x}{\tan^2 x}$, $f'\left(\frac{\pi}{4}\right) = \frac{1 \frac{\pi}{4} \cdot \left(\sqrt{2}\right)^2}{1} = 1 \frac{\pi}{2}$
- 7. A $\int \frac{du}{\sqrt{a^2 u^2}} du = \sin^{-1} \left(\frac{u}{a}\right) \Rightarrow \int \frac{dx}{\sqrt{25 x^2}} dx = \sin^{-1} \left(\frac{x}{5}\right) + C$
- 8. C $\lim_{x \to 2} \frac{f(x) f(2)}{x 2} = f'(2)$ so the derivative of f at x = 2 is 0.
- 9. B Take the derivative of each side of the equation with respect to x. $2xyy' + y^2 + 2xy' + 2y = 0$, substitute the point (1,2) $(1)(4)y' + 2^2 + (2)(1)y' + (2)(2) = 0 \Rightarrow y = -\frac{4}{3}$
- 10. A Take the derivative of the general term with respect to x: $\sum_{n=1}^{\infty} (-1)^{n+1} x^{2n-2}$
- 11. A $\frac{d}{dx} \left(\ln \left(\frac{1}{1-x} \right) \right) = \frac{d}{dx} \left(-\ln(1-x) \right) = -\left(\frac{-1}{1-x} \right) = \frac{1}{1-x}$

12. A Use partial fractions to rewrite $\frac{1}{(x-1)(x+2)}$ as $\frac{1}{3}(\frac{1}{x-1}-\frac{1}{x+2})$

$$\int \frac{1}{(x-1)(x+2)} dx = \frac{1}{3} \int \left(\frac{1}{x-1} - \frac{1}{x+2} \right) dx = \frac{1}{3} \left(\ln|x-1| - \ln|x+2| \right) + C = \frac{1}{3} \ln\left| \frac{x-1}{x+2} \right| + C$$

- 13. B f(0) = 0, f(3) = 0, $f'(x) = 3x^2 6x$; by the Mean Value Theorem, $f'(c) = \frac{f(3) f(0)}{3} = 0$ for $c \in (0,3)$. So, $0 = 3c^2 - 6c = 3c(c-2)$. The only value in the open interval is 2.
- 14. C I. convergent: *p*-series with p = 2 > 1II. divergent: Harmonic series which is known to diverge
 III. convergent: Geometric with $|r| = \frac{1}{3} < 1$
- 15. C $x(t) = 4 + \int_0^t (2w 4) dw = 4 + (w^2 4w) \Big|_0^t = 4 + t^2 4t = t^2 4t + 4$ or, $x(t) = t^2 - 4t + C$, $x(0) = 4 \Rightarrow C = 4$ so, $x(t) = t^2 - 4t + 4$
- 16. C For $f(x) = x^{\frac{1}{3}}$ we have continuity at x = 0, however, $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$ is not defined at x = 0.
- 17. B $f'(x) = (1) \cdot \ln(x^2) + x \cdot \frac{\frac{d}{dx}(x^2)}{x^2} = \ln(x^2) + \frac{2x^2}{x^2} = \ln(x^2) + 2$
- 18. C $\int \sin(2x+3) dx = \frac{1}{2} \int \sin(2x+3)(2dx) = -\frac{1}{2} \cos(2x+3) + C$
- 19. D $g(x) = e^{f(x)}, \ g'(x) = e^{f(x)} \cdot f'(x), \ g''(x) = e^{f(x)} \cdot f''(x) + f'(x) \cdot e^{f(x)} \cdot f'(x)$ $g''(x) = e^{f(x)} \left(f''(x) + \left(f'(x)^2 \right) \right) = h(x)e^{f(x)} \Rightarrow h(x) = f''(x) + \left(f'(x)^2 \right)$
- 20. C Look for concavity changes, there are 3.

21. B Use the technique of antiderivatives by parts:

$$u = f(x) dv = \sin x \, dx$$

$$du = f'(x) dx v = -\cos x$$

$$\int f(x) \sin x \, dx = -f(x) \cos x + \int f'(x) \cos x \, dx \text{ and we are given that}$$

$$\int f(x) \sin x \, dx = -f(x) \cos x + \int 3x^2 \cos x \, dx \Rightarrow f'(x) = 3x^2 \Rightarrow f(x) = x^3$$

22. A $A = \pi r^2$, $A = 64\pi$ when r = 8. Take the derivative with respect to t.

$$\frac{dA}{dt} = 2\pi r \cdot \frac{dr}{dt}; \ 96\pi = 2\pi(8) \cdot \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = 6$$

23. C
$$\lim_{h \to 0} \frac{\int_{1}^{1+h} \sqrt{x^5 + 8} \, dx}{h} = \lim_{h \to 0} \frac{F(1+h) - F(1)}{h} = F'(1) \text{ where } F'(x) = \sqrt{x^5 + 8} \text{ . } F'(1) = 3$$

Alternate solution by L'Hôpital's Rule: $\lim_{h \to 0} \frac{\int_{1}^{1+h} \sqrt{x^5 + 8} \, dx}{h} = \lim_{h \to 0} \frac{\sqrt{(1+h)^5 + 8}}{1} = \sqrt{9} = 3$

24. D Area =
$$\frac{1}{2} \int_0^{\pi/2} \sin^2(2\theta) d\theta = \frac{1}{2} \int_0^{\pi/2} \frac{1}{2} (1 - \cos 4\theta) d\theta = \frac{1}{4} \left(\theta - \frac{1}{4} \sin 4\theta \right) \Big|_0^{\pi/2} = \frac{\pi}{8}$$

25. C At rest when
$$v(t) = 0$$
. $v(t) = e^{-2t} - 2te^{-2t} = e^{-2t}(1-2t)$, $v(t) = 0$ at $t = \frac{1}{2}$ only.

- 26. E Apply the log function, simplify, and differentiate. $\ln y = \ln(\sin x)^x = x \ln(\sin x)$ $\frac{y'}{y} = \ln(\sin x) + x \cdot \frac{\cos x}{\sin x} \Rightarrow y' = y \left(\ln(\sin x) + x \cdot \cot x\right) = (\sin x)^x \left(\ln(\sin x) + x \cdot \cot x\right)$
- 27. E Each of the right-hand sides represent the area of a rectangle with base length (b-a).
 - I. Area under the curve is less than the area of the rectangle with height f(b).
 - II. Area under the curve is more than the area of the rectangle with height f(a).
 - III. Area under the curve is the same as the area of the rectangle with height f(c), a < c < b. Note that this is the Mean Value Theorem for Integrals.
- 28. E $\int e^{x+e^x} dx = \int e^{e^x} (e^x dx)$. This is of the form $\int e^u du$, $u = e^x$, so $\int e^{x+e^x} dx = e^{e^x} + C$

29. D Let
$$x - \frac{\pi}{4} = t$$
. $\lim_{x \to \frac{\pi}{4}} \frac{\sin\left(x - \frac{\pi}{4}\right)}{x - \frac{\pi}{4}} = \lim_{t \to 0} \frac{\sin t}{t} = 1$

30. B At
$$t = 1$$
, $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{3}{2\sqrt{3t+1}}}{3t^2 - 1} \Big|_{t=1} = \frac{\frac{3}{4}}{3-1} = \frac{3}{8}$

31. D The center is x = 1, so only C, D, or E are possible. Check the endpoints.

At x = 0: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges by alternating series test.

At x = 2: $\sum_{n=1}^{\infty} \frac{1}{n}$ which is the harmonic series and known to diverge.

32. E
$$y(-1) = -6$$
, $y'(-1) = 3x^2 + 6x + 7 \Big|_{x=-1} = 4$, the slope of the normal is $-\frac{1}{4}$ and an equation for the normal is $y + 6 = -\frac{1}{4}(x+1) \Rightarrow x + 4y = -25$.

33. C This is the differential equation for exponential growth.

$$y = y(0)e^{-2t} = e^{-2t}$$
; $\frac{1}{2} = e^{-2t}$; $-2t = \ln\left(\frac{1}{2}\right) \Rightarrow t = -\frac{1}{2}\ln\left(\frac{1}{2}\right) = \frac{1}{2}\ln 2$

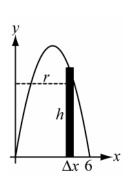
34. A This topic is no longer part of the AP Course Description. $\sum 2\pi\rho \Delta s$ where $\rho = x = y^3$

Surface Area =
$$\int_0^1 2\pi y^3 \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy = \int_0^1 2\pi y^3 \sqrt{1 + \left(3y^2\right)^2} dy = 2\pi \int_0^1 y^3 \sqrt{1 + 9y^4} dy$$

35. B Use shells (which is no longer part of the AP Course Description)

$$\sum 2\pi r h \Delta x$$
 where $r = x$ and $h = y = 6x - x^2$

$$Volume = 2\pi \int_0^6 x \left(6x - x^2\right) dx$$



36. E
$$\int_{-1}^{1} \frac{3}{x^2} dx = 2 \int_{0}^{1} \frac{3}{x^2} dx = 2 \lim_{L \to 0^{+}} \int_{L}^{1} \frac{3}{x^2} dx = 2 \lim_{L \to 0^{+}} -\frac{3}{x} \Big|_{L}^{1} \text{ which does not exist.}$$

37. A This topic is no longer part of the AP Course Description. $y = y_h + y_p$ where $y_h = ce^{-x}$ is the solution to the homogeneous equation $\frac{dy}{dx} + y = 0$ and $y_p = \left(Ax^2 + Bx\right)e^{-x}$ is a particular solution to the given differential equation. Substitute y_p into the differential equation to determine the values of A and B. The answer is $A = \frac{1}{2}$, B = 0.

38. C
$$\lim_{x \to \infty} \left(1 + 5e^x\right)^{\frac{1}{x}} = \lim_{x \to \infty} e^{\ln\left(1 + 5e^x\right)^{\frac{1}{x}}} = e^{\lim_{x \to \infty} \ln\left(1 + 5e^x\right)^{\frac{1}{x}}} = e^{\lim_{x \to \infty} \frac{\ln\left(1 + 5e^x\right)}{x}} = e^{\lim_{x \to \infty} \frac{5e^x}{1 + 5e^x}} = e^{\lim_{x \to \infty} \frac{1}{x}}$$

- 39. A Square cross sections: $\sum y^2 \Delta x$ where $y = e^{-x}$. $V = \int_0^3 e^{-2x} dx = -\frac{1}{2} e^{-2x} \Big|_0^3 = \frac{1}{2} (1 e^{-6})$
- 40. A $u = \frac{x}{2}$, $du = \frac{1}{2}dx$; when x = 2, u = 1 and when x = 4, u = 2 $\int_{2}^{4} \frac{1 \left(\frac{x}{2}\right)^{2}}{x} dx = \int_{1}^{2} \frac{1 u^{2}}{2u} \cdot 2 \, du = \int_{1}^{2} \frac{1 u^{2}}{u} \, du$

41. C
$$y' = x^{\frac{1}{2}}$$
, $L = \int_0^3 \sqrt{1 + (y')^2} dx = \int_0^3 \sqrt{1 + x} dx = \frac{2}{3} (1 + x)^{3/2} \Big|_0^3 = \frac{2}{3} (4^{3/2} - 1^{3/2}) = \frac{2}{3} (8 - 1) = \frac{14}{3}$

42. E Since
$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + \cdots$$
, then $e^{3x} = 1 + 3x + \frac{(3x)^{2}}{2!} + \frac{(3x)^{3}}{3!} + \cdots$
The coefficient we want is $\frac{3^{3}}{3!} = \frac{9}{2}$

- 43. E Graphs A and B contradict f'' < 0. Graph C contradicts f'(0) does not exist. Graph D contradicts continuity on the interval [-2,3]. Graph E meets all given conditions.
- 44. A $\frac{dy}{dx} = 3x^2y \implies \frac{dy}{y} = 3x^2dx \implies \ln|y| = x^3 + K; \ y = Ce^{x^3} \text{ and } y(0) = 8 \text{ so, } y = 8e^{x^3}$

45. D The expression is a Riemann sum with $\Delta x = \frac{1}{n}$ and $f(x) = x^2$.

The evaluation points are: $\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, \frac{3n}{n}$

Thus the right Riemann sum is for x = 0 to x = 3. The limit is equal to $\int_0^3 x^2 dx$.