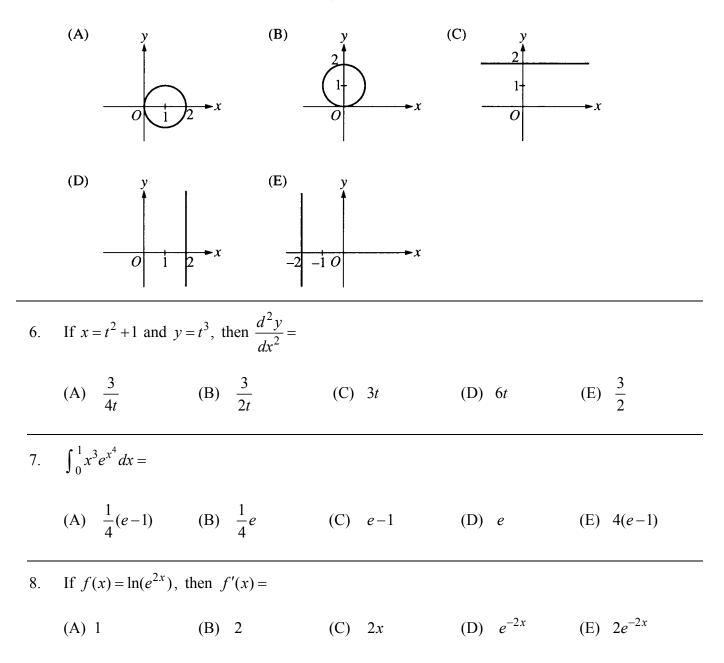
90 Minutes—Scientific Calculator

- *Notes*: (1) The <u>exact</u> numerical value of the correct answer does not always appear among the choices given. When this happens, select from among the choices the number that <u>best approximates</u> the exact numerical value.
 - (2) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f(x) is a real number.
- 1. The area of the region enclosed by the graphs of $y = x^2$ and y = x is

	(A) $\frac{1}{6}$	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) $\frac{5}{6}$	(E) 1
2.	If $f(x) = 2x^2 + 1$, t	hen $\lim_{x \to 0} \frac{f(x) - f(x)}{x^2}$	<u>0)</u> is		
	(A) 0	(B) 1	(C) 2	(D) 4	(E) nonexistent
3.	If p is a polynomia	l of degree $n, n > 0$, what is the degree	of the polynomial	$Q(x) = \int_0^x p(t)dt ?$
	(A) 0	(B) 1	(C) <i>n</i> -1	(D) <i>n</i>	(E) <i>n</i> +1
4.	A particle moves a	long the curve <i>xy</i> =	= 10. If $x = 2$ and $\frac{dy}{dt}$	= 3, what is the va	alue of $\frac{dx}{dt}$?
	(A) 5	(B) 6	(C) 0	(D) ⁴	(F) 6

(A)
$$-\frac{5}{2}$$
 (B) $-\frac{6}{5}$ (C) 0 (D) $\frac{4}{5}$ (E) $\frac{6}{5}$

5. Which of the following represents the graph of the polar curve $r = 2 \sec \theta$?



- 9. If $f(x) = 1 + x^{\frac{1}{3}}$, which of the following is NOT true?
 - (A) f is continuous for all real numbers.
 - (B) f has a minimum at x = 0.
 - (C) f is increasing for x > 0.
 - (D) f'(x) exists for all x.
 - (E) f''(x) is negative for x > 0.

10. Which of the following functions are continuous at x = 1?

- I. $\ln x$ II. e^x
- III. $\ln(e^x 1)$

(A)	I only	(B)	II only	(C)	I and II only	(D)	II and III only	(E)	I, II, and III
-----	--------	-----	---------	-----	---------------	-----	-----------------	-----	----------------

11.
$$\int_{4}^{\infty} \frac{-2x}{\sqrt[3]{9-x^2}} dx$$
 is
(A) $7^{\frac{2}{3}}$ (B) $\frac{3}{2} \left(7^{\frac{2}{3}} \right)$ (C) $9^{\frac{2}{3}} + 7^{\frac{2}{3}}$ (D) $\frac{3}{2} \left(9^{\frac{2}{3}} + 7^{\frac{2}{3}} \right)$ (E) nonexistent

- 12. The position of a particle moving along the *x*-axis is $x(t) = \sin(2t) \cos(3t)$ for time $t \ge 0$. When $t = \pi$, the acceleration of the particle is
- (A) 9 (B) $\frac{1}{9}$ (C) 0 (D) $-\frac{1}{9}$ (E) -913. If $\frac{dy}{dx} = x^2 y$, then y could be (A) $3\ln\left(\frac{x}{3}\right)$ (B) $e^{\frac{x^3}{3}} + 7$ (C) $2e^{\frac{x^3}{3}}$ (D) $3e^{2x}$ (E) $\frac{x^3}{3} + 1$

14. The <u>derivative</u> of f is $x^4(x-2)(x+3)$. At how many points will the graph of f have a relative maximum?

(A) None	(B) One	(C) Two	(D) Three	(E) Four	
----------	---------	---------	-----------	----------	--

15. If
$$f(x) = e^{\tan^2 x}$$
, then $f'(x) =$

(A) $e^{\tan^2 x}$

(B)
$$\sec^2 x e^{\tan^2 x}$$

(C)
$$\tan^2 x e^{\tan^2 x - 1}$$

(D)
$$2 \tan x \sec^2 x e^{\tan^2 x}$$

- (E) $2\tan x e^{\tan^2 x}$
- 16. Which of the following series diverge?

I.
$$\sum_{k=3}^{\infty} \frac{2}{k^2 + 1}$$

II.
$$\sum_{k=1}^{\infty} \left(\frac{6}{7}\right)^k$$

III.
$$\sum_{k=2}^{\infty} \frac{(-1)^k}{k}$$

(A) None (B) II only (C) III only (D) I and III (E) II and III

17. The slope of the line tangent to the graph of ln(xy) = x at the point where x = 1 is

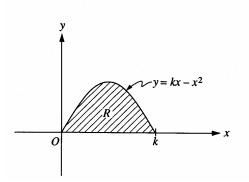
(A) 0 (B) 1 (C)
$$e$$
 (D) e^2 (E) $1-e$

18. If $e^{f(x)} = 1 + x^2$, then f'(x) =

(A)
$$\frac{1}{1+x^2}$$
 (B) $\frac{2x}{1+x^2}$ (C) $2x(1+x^2)$ (D) $2x\left(e^{1+x^2}\right)$ (E) $2x\ln(1+x^2)$

AP Calculus Multiple-Choice Question Collection

Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.



- 19. The shaded region *R*, shown in the figure above, is rotated about the <u>y-axis</u> to form a solid whose volume is 10 cubic units. Of the following, which best approximates k?
 - (A) 1.51 (B) 2.09 (C) 2.49 (D) 4.18 (E) 4.77
- 20. A particle moves along the *x*-axis so that at any time $t \ge 0$ the acceleration of the particle is $a(t) = e^{-2t}$. If at t = 0 the velocity of the particle is $\frac{5}{2}$ and its position is $\frac{17}{4}$, then its position at any time t > 0 is x(t) =
 - (A) $-\frac{e^{-2t}}{2} + 3$ (B) $\frac{e^{-2t}}{4} + 4$ (C) $4e^{-2t} + \frac{9}{2}t + \frac{1}{4}$ (D) $\frac{e^{-2t}}{2} + 3t + \frac{15}{4}$ (E) $\frac{e^{-2t}}{4} + 3t + 4$
- 21. The value of the derivative of $y = \frac{\sqrt[3]{x^2 + 8}}{\sqrt[4]{2x + 1}}$ at x = 0 is

(A)
$$-1$$
 (B) $-\frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$ (E) 1

AP Calculus Multiple-Choice Question Collection

Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.

- 22. If $f(x) = x^2 e^x$, then the graph of f is decreasing for all x such that
 - (A) x < -2 (B) -2 < x < 0 (C) x > -2 (D) x < 0 (E) x > 0
- 23. The length of the curve determined by the equations $x = t^2$ and y = t from t = 0 to t = 4 is
 - (A) $\int_0^4 \sqrt{4t+1} dt$
 - (B) $2\int_{0}^{4}\sqrt{t^{2}+1} dt$
 - (C) $\int_0^4 \sqrt{2t^2 + 1} dt$
 - (D) $\int_0^4 \sqrt{4t^2 + 1} dt$

(E)
$$2\pi \int_{0}^{4} \sqrt{4t^2 + 1} dt$$

- 24. Let f and g be functions that are differentiable for all real numbers, with $g(x) \neq 0$ for $x \neq 0$. If $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$ and $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x \to 0} \frac{f(x)}{g(x)}$ is
 - (A) 0
 - (B) $\frac{f'(x)}{g'(x)}$

(C)
$$\lim_{x \to 0} \frac{f'(x)}{g'(x)}$$

(D)
$$\frac{f'(x)g(x) - f(x)g'(x)}{(f(x))^2}$$

- (E) nonexistent
- 25. Consider the curve in the *xy*-plane represented by $x = e^t$ and $y = te^{-t}$ for $t \ge 0$. The slope of the line tangent to the curve at the point where x = 3 is
 - (A) 20.086 (B) 0.342 (C) -0.005 (D) -0.011 (E) -0.033

AP Calculus Multiple-Choice Question Collection

Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com.

26. If $y = \arctan(e^{2x})$, then $\frac{dy}{dx} =$

(A)
$$\frac{2e^{2x}}{\sqrt{1-e^{4x}}}$$
 (B) $\frac{2e^{2x}}{1+e^{4x}}$ (C) $\frac{e^{2x}}{1+e^{4x}}$ (D) $\frac{1}{\sqrt{1-e^{4x}}}$ (E) $\frac{1}{1+e^{4x}}$

27. The interval of convergence of
$$\sum_{n=0}^{\infty} \frac{(x-1)^n}{3^n}$$
 is
(A) $-3 < x \le 3$ (B) $-3 \le x \le 3$ (C) $-2 < x < 4$
(D) $-2 \le x < 4$ (E) $0 \le x \le 2$

28. If a particle moves in the *xy*-plane so that at time t > 0 its position vector is $(\ln(t^2 + 2t), 2t^2)$, then at time t = 2, its velocity vector is

(A)
$$\left(\frac{3}{4}, 8\right)$$
 (B) $\left(\frac{3}{4}, 4\right)$ (C) $\left(\frac{1}{8}, 8\right)$ (D) $\left(\frac{1}{8}, 4\right)$ (E) $\left(-\frac{5}{16}, 4\right)$

- 29. $\int x \sec^2 x \, dx =$ (A) $x \tan x + C$ (B) $\frac{x^2}{2} \tan x + C$ (C) $\sec^2 x + 2\sec^2 x \tan x + C$ (D) $x \tan x - \ln |\cos x| + C$ (E) $x \tan x + \ln |\cos x| + C$
- 30. What is the volume of the solid generated by rotating about the *x*-axis the region enclosed by the curve $y = \sec x$ and the lines x = 0, y = 0, and $x = \frac{\pi}{3}$?
 - (A) $\frac{\pi}{\sqrt{3}}$
 - (B) π
 - (C) $\pi\sqrt{3}$
 - (D) $\frac{8\pi}{3}$ (E) $\pi \ln\left(\frac{1}{2} + \sqrt{3}\right)$

31. If
$$s_n = \left(\frac{(5+n)^{100}}{5^{n+1}}\right) \left(\frac{5^n}{(4+n)^{100}}\right)$$
, to what number does the sequence $\{s_n\}$ converge?

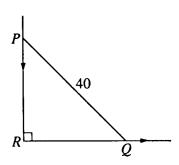
(A)
$$\frac{1}{5}$$
 (B) 1 (C) $\frac{5}{4}$ (D) $\left(\frac{5}{4}\right)^{100}$ (E) The sequence does not converge.

32. If $\int_{a}^{b} f(x)dx = 5$ and $\int_{a}^{b} g(x)dx = -1$, which of the following must be true?

I.
$$f(x) > g(x)$$
 for $a \le x \le b$
II. $\int_{a}^{b} (f(x) + g(x)) dx = 4$
III. $\int_{a}^{b} (f(x)g(x)) dx = -5$
(A) I only (B) II only (C) III only (D) II and III only (E) I, II, and III

33. Which of the following is equal to $\int_0^{\pi} \sin x \, dx$?

(A)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx$$
 (B) $\int_{0}^{\pi} \cos x \, dx$ (C) $\int_{-\pi}^{0} \sin x \, dx$
(D) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \, dx$ (E) $\int_{\pi}^{2\pi} \sin x \, dx$



34. In the figure above, PQ represents a 40-foot ladder with end P against a vertical wall and end Q on level ground. If the ladder is slipping down the wall, what is the distance RQ at the instant when Q is moving along the ground $\frac{3}{4}$ as fast as P is moving down the wall?

(A)
$$\frac{6}{5}\sqrt{10}$$
 (B) $\frac{8}{5}\sqrt{10}$ (C) $\frac{80}{\sqrt{7}}$ (D) 24 (E) 32

- 35. If *F* and *f* are differentiable functions such that $F(x) = \int_0^x f(t)dt$, and if F(a) = -2 and F(b) = -2 where a < b, which of the following must be true?
 - (A) f(x) = 0 for some x such that a < x < b.
 - (B) f(x) > 0 for all x such that a < x < b.
 - (C) f(x) < 0 for all x such that a < x < b.
 - (D) $F(x) \le 0$ for all x such that a < x < b.
 - (E) F(x) = 0 for some x such that a < x < b.
- 36. Consider all right circular cylinders for which the sum of the height and circumference is 30 centimeters. What is the radius of the one with maximum volume?

(A) 3 cm (B) 10 cm (C) 20 cm (D)
$$\frac{30}{\pi^2}$$
 cm (E) $\frac{10}{\pi}$ cm

37. If
$$f(x) = \begin{cases} x & \text{for } x \le 1 \\ \frac{1}{x} & \text{for } x > 1 \end{cases}$$
 then $\int_{0}^{e} f(x) dx =$
(A) 0 (B) $\frac{3}{2}$ (C) 2 (D) e (E) $e + \frac{1}{2}$
38. During a certain epidemic, the number of people that are infected at any time increases at a rate proportional to the number of people that are infected at that time. If 1,000 people are infected when the epidemic is first discovered, and 1,200 are infected 7 days later, how many people are infected 12 days after the epidemic is first discovered?
(A) 343 (B) 1,343 (C) 1,367 (D) 1,400 (E) 2,057
39. If $\frac{dy}{dx} = \frac{1}{x}$, then the average rate of change of y with respect to x on the closed interval [1,4] is
(A) $-\frac{1}{4}$ (B) $\frac{1}{2}\ln 2$ (C) $\frac{2}{3}\ln 2$ (D) $\frac{2}{5}$ (E) 2
40. Let R be the region in the first quadrant enclosed by the x-axis and the graph of $y = \ln(1+2x-x^{2})$. If Simpson's Rule with 2 subintervals is used to approximate the area of R, the approximation is
(A) 0.462 (B) 0.693 (C) 0.924 (D) 0.986 (E) 1.850
41. Let $f(x) = \int_{-2}^{x^{2}-3x} e^{t^{2}} dt$. At what value of x is $f(x)$ a minimum?
(A) For no value of x (B) $\frac{1}{2}$ (C) $\frac{3}{2}$ (D) 2 (E) 3

42.
$$\lim_{x \to 0} (1+2x)^{\csc x} =$$

(A) 0 (B) 1 (C) 2 (D) e (E) e^2

43. The coefficient of x^6 in the Taylor series expansion about x = 0 for $f(x) = \sin(x^2)$ is

(A)
$$-\frac{1}{6}$$
 (B) 0 (C) $\frac{1}{120}$ (D) $\frac{1}{6}$ (E) 1

44. If f is continuous on the interval [a,b], then there exists c such that a < c < b and $\int_{a}^{b} f(x) dx =$

(A)
$$\frac{f(c)}{b-a}$$
 (B) $\frac{f(b)-f(a)}{b-a}$ (C) $f(b)-f(a)$ (D) $f'(c)(b-a)$ (E) $f(c)(b-a)$

45. If
$$f(x) = \sum_{k=1}^{\infty} (\sin^2 x)^k$$
, then $f(1)$ is
(A) 0.369 (B) 0.585 (C) 2.400 (D) 2.426 (E) 3.426

1. A
$$\int_0^1 (x - x^2) dx = \left(\frac{1}{2}x^2 - \frac{1}{3}x^3\right) \Big|_0^1 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

2. C $\lim_{x \to 0} \frac{2x^2 + 1 - 1}{x^2} = 2$

3. E $Q'(x) = p(x) \Longrightarrow \text{degree of } Q \text{ is } n+1$

4. B If
$$x = 2$$
 then $y = 5$. $x \frac{dy}{dt} + y \frac{dx}{dt} = 0$; $2(3) + 5 \cdot \frac{dx}{dt} = 0 \Rightarrow \frac{dx}{dt} = -\frac{6}{5}$

5. D $r = 2 \sec \theta$; $r \cos \theta = 2 \implies x = 2$. This is a vertical line through the point (2,0).

6. A
$$\frac{dx}{dt} = 2t$$
, $\frac{dy}{dt} = 3t^2$ thus $\frac{dy}{dx} = \frac{3t^2}{2t} = \frac{3}{2}t$; $\frac{d^2y}{dx^2} = \frac{d\left(\frac{dy}{dx}\right)}{dx} = \frac{\frac{d\left(\frac{dy}{dx}\right)}{\frac{dt}{dt}}}{\frac{dx}{\frac{dt}{dt}}} = \frac{\frac{3}{2}}{\frac{2}{2t}} = \frac{3}{4t}$

7. A
$$\int_0^1 x^3 e^{x^4} dx = \frac{1}{4} \int_0^1 e^{x^4} (4x^3 dx) = \frac{1}{4} e^{x^4} \Big|_0^1 = \frac{1}{4} (e-1)$$

8. B
$$f(x) = \ln e^{2x} = 2x$$
, $f'(x) = 2$

- 9. D $f'(x) = \frac{2}{3} \cdot \frac{1}{x^{1/3}}$. This does not exist at x = 0. D is false, all others are true.
- 10. E I. $\ln x$ is continuous for x > 0II. e^x is continuous for all xIII. $\ln(e^x - 1)$ is continuous for x > 0.

11. E
$$\int_{4}^{\infty} \frac{-2x}{\sqrt[3]{9-x^2}} dx = \lim_{b \to \infty} \frac{3}{2} \left(9-x^2\right)^{\frac{2}{3}} \Big|_{4}^{b}$$
. This limit diverges. Another way to see this without

doing the integration is to observe that the denominator behaves like $x^{2/3}$ which has a smaller degree than the degree of the numerator. This would imply that the integral will diverge.

12. E
$$v(t) = 2\cos 2t + 3\sin 3t$$
, $a(t) = -4\sin 2t + 9\cos 3t$, $a(\pi) = -9$.

13. C
$$\frac{dy}{y} = x^2 dx$$
, $\ln |y| = \frac{1}{3}x^3 + C_1$, $y = Ce^{\frac{1}{3}x^3}$. Only C is of this form.

14. B The only place that f'(x) changes sign from positive to negative is at x = -3.

15. D
$$f'(x) = e^{\tan^2 x} \cdot \frac{d(\tan^2 x)}{dx} = 2 \tan x \cdot \sec^2 x \cdot e^{\tan^2 x}$$

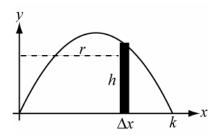
16. A I. Compare with *p*-series, p = 2II. Geometric series with $r = \frac{6}{7}$ III. Alternating harmonic series

17. A Using implicit differentiation,
$$\frac{y + xy'}{xy} = 1$$
. When $x = 1$, $\frac{y + y'}{y} = 1 \Rightarrow y' = 0$.
Alternatively, $xy = e^x$, $y = \frac{e^x}{x}$, $y' = \frac{xe^x - e^x}{x^2} = \frac{e^x(x-1)}{x^2}$. $y'(1) = 0$

18. B
$$f'(x) \cdot e^{f(x)} = 2x \Longrightarrow f'(x) = \frac{2x}{e^{f(x)}} = \frac{2x}{1+x^2}$$

19. B Use cylindrical shells which is no longer part of the AP
Course Description. Each shell is of the form
$$2\pi rh\Delta x$$

where $r = x$ and $h = kx - x^2$. Solve the equation
 $10 = 2\pi \int_0^k x(kx - x^2) dx = 2\pi \left(\frac{kx^3}{3} - \frac{x^4}{4}\right)\Big|_0^k = 2\pi \cdot \frac{k^4}{12}$.
 $k = \sqrt[4]{\frac{60}{\pi}} \approx 2.0905$.



20. E
$$v(t) = -\frac{1}{2}e^{-2t} + 3$$
 and $x(t) = \frac{1}{4}e^{-2t} + 3t + 4$

21. A Use logarithms. $\ln y = \frac{1}{3} \ln \left(x^2 + 8 \right) - \frac{1}{4} \ln \left(2x + 1 \right); \frac{y'}{y} = \frac{2x}{3\left(x^2 + 8 \right)} - \frac{2}{4\left(2x + 1 \right)}; \text{ at } (0, 2), y' = -1.$

22. B
$$f'(x) = x^2 e^x + 2x e^x = x e^x (x+2); f'(x) < 0 \text{ for } -2 < x < 0$$

23. D
$$L = \int_0^4 \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^4 \sqrt{4t^2 + 1} dt$$

24. C This is L'Hôpital's Rule.

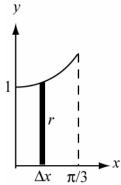
25. D At
$$t = 3$$
, slope $= \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-te^{-t} + e^{-t}}{e^t} = \frac{1-t}{e^{2t}}\Big|_{t=3} = -\frac{2}{e^6} = -0.005$

26. B
$$\frac{2e^{2x}}{1+(e^{2x})^2} = \frac{2e^{2x}}{1+e^{4x}}$$

27. C This is a geometric series with $r = \frac{x-1}{3}$. Convergence for -1 < r < 1. Thus the series is convergent for -2 < x < 4.

28. A
$$v = \left(\frac{2t+2}{t^2+2t}, 4t\right), v(2) = \left(\frac{6}{8}, 8\right) = \left(\frac{3}{4}, 8\right)$$

- 29. E Use the technique of antiderivatives by parts: u = x and $dv = \sec^2 x \, dx$ $\int x \sec^2 x \, dx = x \tan x - \int \tan x \, dx = x \tan x + \ln |\cos x| + C$
- 30. C Each slice is a disk with radius $r = \sec x$ and width Δx . Volume $= \pi \int_{0}^{\pi/3} \sec^2 x \, dx = \pi \tan x \Big|_{0}^{\pi/3} = \pi \sqrt{3}$



31. A $s_n = \frac{1}{5} \left(\frac{5+n}{4+n}\right)^{100}$, $\lim_{n \to \infty} s_n = \frac{1}{5} \cdot 1 = \frac{1}{5}$

34.

32. B Only II is true. To see that neither I nor III must be true, let f(x) = 1 and let $g(x) = x^2 - \frac{128}{15}$ on the interval [0, 5].

33. A The value of this integral is 2. Option A is also 2 and none of the others have a value of 2. Visualizing the graphs of $y = \sin x$ and $y = \cos x$ is a useful approach to the problem.

E Let
$$y = PR$$
 and $x=RQ$.
 $x^{2} + y^{2} = 40^{2}$, $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$, $x \cdot \frac{3}{4}\left(-\frac{dy}{dt}\right) + y\frac{dy}{dt} = 0 \Rightarrow y = \frac{3}{4}x$.
Substitute into $x^{2} + y^{2} = 40^{2}$. $x^{2} + \frac{9}{16}x^{2} = 40^{2}$, $\frac{25}{16}x^{2} = 40^{2}$, $x = 32$

35. A Apply the Mean Value Theorem to *F*. $F'(c) = \frac{F(b) - F(a)}{b - a} = \frac{0}{a} = 0$. This means that there is number in the interval (a,b) for which *F'* is zero. However, F'(x) = f(x). So, f(x) = 0 for some number in the interval (a,b).

36. E
$$v = \pi r^2 h$$
 and $h + 2\pi r = 30 \Rightarrow v = 2\pi \left(15r^2 - \pi r^3\right)$ for $0 < r < \frac{15}{\pi}$; $\frac{dv}{dr} = 6\pi r \left(10 - \pi r\right)$. The maximum volume is when $r = \frac{10}{\pi}$ because $\frac{dv}{dr} > 0$ on $\left(0, \frac{10}{\pi}\right)$ and $\frac{dv}{dr} < 0$ on $\left(\frac{10}{\pi}, \frac{15}{\pi}\right)$.

37. B
$$\int_0^e f(x) dx = \int_0^1 x dx + \int_1^e \frac{1}{x} dx = \frac{1}{2} + \ln e = \frac{3}{2}$$

38. C
$$\frac{dN}{dt} = kN \Rightarrow N = Ce^{kt}$$
. $N(0) = 1000 \Rightarrow C = 1000$. $N(7) = 1200 \Rightarrow k = \frac{1}{7}\ln(1.2)$. Therefore $N(12) = 1000e^{\frac{12}{7}\ln(1.2)} \approx 1367$.

39. C Want
$$\frac{y(4) - y(1)}{4 - 1}$$
 where $y(x) = \ln |x| + C$. This gives $\frac{\ln 4 - \ln 1}{3} = \frac{1}{3} \ln 4 = \frac{1}{3} \ln 2^2 = \frac{2}{3} \ln 2$.

40. C The interval is [0,2], $x_0 = 0$, $x_1 = 1$, $x_2 = 2$. $S = \frac{1}{3}(0+4\ln 2+0) = \frac{4}{3}\ln 2$. Note that Simpson's rule is no longer part of the BC Course Description.

41. C
$$f'(x) = (2x-3)e^{(x^2-3x)^2}$$
; $f' < 0$ for $x < \frac{3}{2}$ and $f' > 0$ for $x > \frac{3}{2}$.
Thus *f* has its absolute minimum at $x = \frac{3}{2}$.

42. E Suppose $\lim_{x \to 0} \ln\left(\left(1+2x\right)^{\csc x}\right) = A$. The answer to the given question is e^A . Use L'Hôpital's Rule: $\lim_{x \to 0} \ln\left(\left(1+2x\right)^{\csc x}\right) = \lim_{x \to 0} \frac{\ln(1+2x)}{\sin x} = \lim_{x \to 0} \frac{2}{1+2x} \cdot \frac{1}{\cos x} = 2$.

43. A
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \Rightarrow \sin x^2 = x^2 - \frac{(x^2)^3}{3!} + \frac{(x^2)^5}{5!} - \dots = x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} - \dots$$

44. E By the Intermediate Value Theorem there is a *c* satisfying a < c < b such that f(c) is equal to the average value of *f* on the interval [*a*,*b*]. But the average value is also given by $\frac{1}{b-a}\int_{a}^{b} f(x)dx$. Equating the two gives option E.

Alternatively, let $F(t) = \int_{a}^{t} f(x) dx$. By the Mean Value Theorem, there is a *c* satisfying a < c < b such that $\frac{F(b) - F(a)}{b - a} = F'(c)$. But $F(b) - F(a) = \int_{a}^{b} f(x) dx$, and F'(c) = f(c) by the Fundamental Theorem of Calculus. This again gives option E as the answer. This result is called the Mean Value Theorem for Integrals.

45. D This is an infinite geometric series with a first term of $\sin^2 x$ and a ratio of $\sin^2 x$. The series converges to $\frac{\sin^2 x}{1-\sin^2 x} = \tan^2 x$ for $x \neq (2k+1)\frac{\pi}{2}$, k an integer. The answer is therefore $\tan^2 1 = 2.426$.