
AP Calculus BC Series
Posted on 05 Apr, 2025
1.
\[\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n\]
- \(a_n\) is the \(n^{\text{th}}\) term
- \(S_n\) is the sum of the first \(n\) terms (partial sum)
If
\[\lim_{n \to \infty} S_n \text{ converges, then } \sum_{n=1}^{\infty} a_n \text{ converges}\]
If
\[\lim_{n \to \infty} S_n \text{ diverges, then } \sum_{n=1}^{\infty} a_n \text{ diverges}\]
2.
Geometric Infinite Series
- If \(|r| \geq 1\), the series diverges
- If \(|r| < 1\), the series converges
\[\sum_{n=1}^{\infty} ar^n = \frac{ar^k}{1-r}\]
3.
\(n^{\text{th}}\) Term Test for Divergence
If
\[\lim_{n \to \infty} a_n \neq 0, \quad \text{then} \sum_{n=1}^{\infty} a_n \text{ diverges}\]
If
\[\lim_{n \to \infty} a_n = 0, \quad \text{then} \sum_{n=1}^{\infty} a_n \text{ may converge or diverge}\]
4.
Integral Test for Convergence
If \( f \) is a positive, continuous, and decreasing function for \( x \geq k \), and \( a_n = f(n) \), then
\[\sum_{n=k}^{\infty} a_n \quad \text{and} \quad \int_{k}^{\infty} f(x) \, dx\]
both converge or both diverge.
5.
p-Series
Let \( p \) be a positive constant of the series:
\[\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots\]
- The series converges if \( p > 1 \)
- The series diverges if \( 0 < p \leq 1 \)
6.
Comparison Test
Let \( 0 < a_n \leq b_n \) for all \( n \).
- If
\[\sum_{n=1}^{\infty} b_n \text{ converges, then } \sum_{n=1}^{\infty} a_n \text{ also converges}\] - If
\[\sum_{n=1}^{\infty} a_n \text{ diverges, then } \sum_{n=1}^{\infty} b_n \text{ also diverges}\]
7.
Limit Comparison Test
If \( a_n > 0 \), \( b_n > 0 \), and \[ \lim_{n \to \infty} \frac{a_n}{b_n} = L \quad \text{(where \( L \) is finite and positive)} \] then \[ \sum_{n=1}^{\infty} a_n \quad \text{and} \quad \sum_{n=1}^{\infty} b_n \] either both converge or both diverge.
8.
Alternating Series Test
If \( a_n > 0 \), then the alternating series
\[
\sum_{n=1}^{\infty} (-1)^n a_n \quad \text{and} \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n
\]
converge if both of the following are true:
1.
\[
\lim_{n \to \infty} a_n = 0
\]
2.
\[
|a_{n+1}| \leq |a_n|
\]
9.
Ratio Test for Convergence
For a series \( \sum_{n=1}^{\infty} a_n \) with positive terms, consider: \[ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \begin{cases} < 1 & \text{Converges} \\ > 1 & \text{Diverges} \\ = 1 & \text{Use another test} \end{cases} \]
10.
Absolute and Conditional Convergence
1) Converges Absolutely:
If \[ \sum_{n=1}^{\infty} |a_n| \text{ converges,} \] then the original series \[ \sum_{n=1}^{\infty} a_n \text{ converges Absolutely.} \]
2) Converges Conditionally:
If \[ \sum_{n=1}^{\infty} |a_n| \text{ diverges,} \] but the original series \[ \sum_{n=1}^{\infty} a_n \text{ converges,} \] then the series converges conditionally.
3) Divergent:
Both \[ \sum_{n=1}^{\infty} |a_n| \quad \text{and} \quad \sum_{n=1}^{\infty} a_n \] diverge. then the series is Divergent