Answer is: option3
\( 2(\sqrt{b} - \sqrt{a}) \)Solution:
We are given a Riemann sum:
\[ \lim_{n \to \infty} \sum_{i=1}^n \frac{1}{\sqrt{x_i}} \Delta x \]
This sum approximates the definite integral of a function over an interval. Specifically, the sum becomes the definite integral:
\[ \int_a^b \frac{1}{\sqrt{x}} \, dx \]
The function is \( f(x) = \frac{1}{\sqrt{x}} \)
The interval is from \( a \) to \( b \)
We compute:
\[ \int_a^b \frac{1}{\sqrt{x}} \, dx = \left[ 2\sqrt{x} \right]_a^b = 2\sqrt{b} - 2\sqrt{a} \]
So, the correct answer is: \[ \text{(C) } 2(\sqrt{b} - \sqrt{a}) \]