Answer is: option2
\( \frac{5}{2} \)Solution:
.
\( h'(x) = f'(2x^2 - x) \cdot (4x - 1) \)
\( h'(-1) = f'(2(-1)^2 - (-1)) \cdot (4(-1) - 1) \)
\( h'(-1) = f'(3) \cdot (-5) \)
\( h'(-1) = \left( -\frac{1}{2} \right) \cdot (-5) = \frac{5}{2} \)
Answer is: option2
\( \frac{5}{2} \)Solution:
.
\( h'(x) = f'(2x^2 - x) \cdot (4x - 1) \)
\( h'(-1) = f'(2(-1)^2 - (-1)) \cdot (4(-1) - 1) \)
\( h'(-1) = f'(3) \cdot (-5) \)
\( h'(-1) = \left( -\frac{1}{2} \right) \cdot (-5) = \frac{5}{2} \)