Answer is: option3
\( \frac{y - 8x^3}{9y^2 - x} \)Solution:
Problem: We are given the equation: \[ 2x^4 - xy + 3y^3 = 12 \] and we need to find \( \frac{dy}{dx} \) in terms of \( x \) and \( y \).
Step 1: Differentiate the equation implicitly
The equation is:
\[ 2x^4 - xy + 3y^3 = 12 \] Differentiate both sides with respect to \( x \) (implicit differentiation):
- For \( 2x^4 \), the derivative is: \[ \frac{d}{dx}(2x^4) = 8x^3 \]
- For \( -xy \), apply the product rule: \[ \frac{d}{dx}(-xy) = -\left( \frac{d}{dx}(x)y + x\frac{dy}{dx} \right) = -\left( y + x\frac{dy}{dx} \right) \]
- For \( 3y^3 \), apply the chain rule: \[ \frac{d}{dx}(3y^3) = 9y^2 \frac{dy}{dx} \]
- For the constant \( 12 \), the derivative is: \[ \frac{d}{dx}(12) = 0 \]
Therefore, the differentiated equation is: \[ 8x^3 - \left( y + x\frac{dy}{dx} \right) + 9y^2 \frac{dy}{dx} = 0 \]
Step 2: Solve for \( \frac{dy}{dx} \)
Now, let's solve for \( \frac{dy}{dx} \). First, expand the equation:
\[ 8x^3 - y - x\frac{dy}{dx} + 9y^2 \frac{dy}{dx} = 0 \]
Group the terms involving \( \frac{dy}{dx} \):
\[ - x\frac{dy}{dx} + 9y^2 \frac{dy}{dx} = y - 8x^3 \]
Factor out \( \frac{dy}{dx} \):
\[ \frac{dy}{dx} (-x + 9y^2) = y - 8x^3 \]
Finally, solve for \( \frac{dy}{dx} \):
\[ \frac{dy}{dx} = \frac{y - 8x^3}{9y^2 - x} \]
Final Answer:
The expression for \( \frac{dy}{dx} \) is:
\[ \frac{dy}{dx} = \frac{y - 8x^3}{9y^2 - x} \]
Thus, the correct answer is Option C.