46. If f(x)=(1+x20)5, find f″(40).
Answer is: option2
Solution:
Using the chain rule, differentiate f(x): f′(x)=5(1+x20)4⋅120 f′(x)=520(1+x20)4=14(1+x20)4 Differentiate again: f″(x)=14⋅4(1+x20)3⋅120 f″(x)=120(1+x20)3 Substituting x=40: f″(40)=120(1+4020)3 =120(1+2)3 =120(3)3 =2720 =1.35 Final Answer: 1.350