Answer is: option1
\( g(x) - 6 = g''''(x)\)Solution:
Using the identity \( \cos(-x) = \cos x \), we rewrite:
\[ g(x) = \cos x - \sin x + 6 \]First derivative:
\[ g'(x) = \frac{d}{dx} (\cos x - \sin x + 6) \] \[ = -\sin x - \cos x \]Second derivative:
\[ g''(x) = \frac{d}{dx} (-\sin x - \cos x) \] \[ = -\cos x + \sin x \]Third derivative:
\[ g'''(x) = \frac{d}{dx} (-\cos x + \sin x) \] \[ = \sin x + \cos x \]Fourth derivative:
\[ g''''(x) = \frac{d}{dx} (\sin x + \cos x) \] \[ = \cos x - \sin x \]Observing that:
\[ g''''(x) = g(x) - 6 \]Thus, we conclude:
\[ g(x) - 6 = g''''(x) \]