39. If the maximum value of the function \( y = \frac{\cos x - m}{\sin x} \) is at \( x = \frac{\pi}{4} \), what is the value of \( m \)?






Answer is: option2

\( \sqrt{2} \)

Solution:

First, find the derivative of \( y \) with respect to \( x \):

\[ y = \frac{\cos x - m}{\sin x} \]

Using the quotient rule:

\[ y' = \frac{(-\sin x)(\sin x) - (\cos x - m)(\cos x)}{\sin^2 x} \]

Simplify the numerator:

\[ y' = \frac{-\sin^2 x - \cos^2 x + m \cos x}{\sin^2 x} = \frac{-(\sin^2 x + \cos^2 x) + m \cos x}{\sin^2 x} \]

Since \( \sin^2 x + \cos^2 x = 1 \):

\[ y' = \frac{-1 + m \cos x}{\sin^2 x} \]

For the function to have a maximum at \( x = \frac{\pi}{4} \), the derivative must be zero at that point:

\[ y'\left(\frac{\pi}{4}\right) = \frac{-1 + m \cos\left(\frac{\pi}{4}\right)}{\sin^2\left(\frac{\pi}{4}\right)} = 0 \]

Compute \( \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \)

Substitute these values:

\[ \frac{-1 + m \cdot \frac{\sqrt{2}}{2}}{\left(\frac{\sqrt{2}}{2}\right)^2} = 0 \Rightarrow \frac{-1 + m \cdot \frac{\sqrt{2}}{2}}{\frac{1}{2}} = 0 \]

Multiply numerator and denominator by 2 to eliminate the fraction:

\[ -2 + m \sqrt{2} = 0 \Rightarrow m \sqrt{2} = 2 \Rightarrow m = \frac{2}{\sqrt{2}} = \sqrt{2} \]

The value of \( m \) is \( \sqrt{2} \).

Answer: (B)

Previous Next