Answer is: option2
\( 0 \) onlySolution:
Given function values:
\[ f(-1) = \frac{-1}{-1+2} = \frac{-1}{1} = -1 \]
\[ f(2) = \frac{2}{2+2} = \frac{2}{4} = \frac{1}{2} \]
Computing the mean value theorem slope:
\[ \frac{f(2) - f(-1)}{2 - (-1)} = \frac{\frac{1}{2} - (-1)}{2+1} = \frac{\frac{1}{2} + 1}{3} = \frac{\frac{3}{2}}{3} = \frac{1}{2} \]
Thus, we must solve for \( c \) such that:
\[ f'(c) = \frac{1}{2} \]
Using the quotient rule:
\[ \left( \frac{x}{x+2} \right)' = \frac{(x+2)(1) - x(1)}{(x+2)^2} = \frac{x+2-x}{(x+2)^2} = \frac{2}{(x+2)^2} \]
Thus,
\[ f'(x) = \frac{2}{(x+2)^2} \]
Setting \( f'(c) = \frac{1}{2} \):
\[ \frac{2}{(c+2)^2} = \frac{1}{2} \]
Cross multiplying:
\[ 2 \times 2 = (c+2)^2 \]
\[ 4 = (c+2)^2 \]
Taking the square root:
\[ c+2 = \pm 2 \]
\[ c = -2 \pm 2 \]
Thus, the two possible values are:
\[ c = 0 \quad \text{or} \quad c = -4 \]
Checking interval validity:
- \( c = 0 \) is in the interval \( (-1,2) \).
- \( c = -4 \) is not in the interval.
Thus, the only valid solution is \( c = 0 \).
The correct answer is: 0