16. Let y=x2lnx. When x=e and dx=0.1, the value of dy is:






Answer is: option3

3e10

Solution:

y=x2lnx

We need to find dy when x=e and dx=0.1.

Differentiating both sides with respect to x:

dydx=ddx(x2lnx).

Using the product rule, where u=x2 and v=lnx:

ddx(x2lnx)=x2ddx(lnx)+lnxddx(x2).

=x21x+lnx(2x).

=x+2xlnx.

Thus,

dy=(x+2xlnx)dx.

Substituting x=e:

dy=(e+2elne)dx.

Since lne=1, this simplifies to:

dy=(e+2e1)dx.

dy=(e+2e)dx.

dy=3edx.

Substituting dx=0.1:

dy=3e×0.1.

dy=3e10.

The answer is 3e10.

Previous Next