Answer is: option4
4.2Solution:
We use linear approximation (tangent line approximation) to estimate \( f(2.8) \). The linear approximation formula is:
\[ f(x) \approx f(a) + f'(a)(x - a) \]where:
- \( a = 3 \),
- \( f(3) = 5 \),
- \( f'(3) = 4 \),
- \( x = 2.8 \).
Apply the linear approximation formula
\[ f(2.8) \approx f(3) + f'(3)(2.8 - 3) \]Substituting the given values:
\[ f(2.8) \approx 5 + 4(2.8 - 3) \]Simplify the expression
\[ f(2.8) \approx 5 + 4(-0.2) \] \[ f(2.8) \approx 5 - 0.8 \] \[ f(2.8) \approx 4.2 \]Final Answer - 4.2