Answer is: option1
\( e^{-2} \)Solution:
Define:
\[ L = \lim_{y \to 0^+} \left[\cos(2y)\right]^{\frac{1}{y^2}} \]
Taking the natural logarithm:
\[ \ln L = \lim_{y \to 0^+} \frac{\ln(\cos(2y))}{y^2} \]
Since \( \ln(\cos(2y)) \to \ln(1) = 0 \) and \( y^2 \to 0 \), we get an indeterminate form \( \frac{0}{0} \). Applying L'Hôpital's Rule by differentiating the numerator and denominator:
Derivative of \( \ln(\cos(2y)) \):
\[ \frac{d}{dy} \ln(\cos(2y)) = \frac{-2\sin(2y)}{\cos(2y)} = -2\tan(2y) \]
Derivative of \( y^2 \):
\[ \frac{d}{dy} y^2 = 2y \]
Now applying L'Hopital's Rule:
\[ \ln L = \lim_{y \to 0^+} \frac{-2\tan(2y)}{2y} \]
Simplifying:
\[ \ln L = \lim_{y \to 0^+} \frac{-\tan(2y)}{y} \]
Using the small-angle approximation \( \tan(2y) \approx 2y \) as \( y \to 0 \):
\[ \ln L = \lim_{y \to 0^+} \frac{-2y}{y} = -2 \]
Since \( L = e^{\ln L} \), we get:
\[ L = e^{-2} \]
Thus, the given limit evaluates to: \( e^{-2} \)