Answer is: option3
\( f'(e) \), where \( f(x) = \ln \sqrt{x} \)Solution:
We are given the limit:
\[ \lim\limits_{h \to 0} \frac{\frac{1}{2} \left[ \ln(e+h) - 1 \right]}{h} \]We rewrite:
\[ \frac{1}{2} \ln(e+h) = \ln \sqrt{e+h} \]Since \( 1 = \ln e \), we rewrite \( \frac{1}{2} \cdot 1 \) as:
\[ \frac{1}{2} \ln e = \ln \sqrt{e} \]Thus, the given limit becomes:
\[ \lim\limits_{h \to 0} \frac{\ln \sqrt{e+h} - \ln \sqrt{e}}{h} \]We set:
\[ f(x) = \ln \sqrt{x} \]Rewriting \( \ln \sqrt{x} \) using logarithmic properties:
\[ f(x) = \ln x^{1/2} = \frac{1}{2} \ln x \] Using differentiation: \[ f'(x) = \frac{1}{2} \cdot \frac{1}{x} = \frac{1}{2x} \] \[ f'(e) = \frac{1}{2e} \]From our given limit expression:
\[ \lim\limits_{h \to 0} \frac{\ln \sqrt{e+h} - \ln \sqrt{e}}{h} \]This is the definition of \( f'(e) \), so:
\[ \lim\limits_{h \to 0} \frac{\ln \sqrt{e+h} - \ln \sqrt{e}}{h} = f'(e) = \frac{1}{2e} \] Final Answer:From the given choices, the correct answer is:
\[ \ f'(e), \text{ where } f(x) = \ln \sqrt{x}. \]