Answer is: option2
\( \frac{x^{\ln \sqrt{x}} \ln x}{x} \)Solution:
We are given:
\[ y = x^{\ln \sqrt{x}} \]Since \( \ln \sqrt{x} = \ln x^{1/2} = \frac{1}{2} \ln x \), we rewrite:
\[ y = x^{\frac{1}{2} \ln x} \]Taking the natural logarithm on both sides:
\[ \ln y = \frac{1}{2} \ln x \cdot \ln x = \frac{1}{2} (\ln x)^2 \] Differentiating both sides implicitly: \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \cdot 2 \ln x \cdot \frac{1}{x} = \frac{\ln x}{x} \]Multiplying both sides by \( y = x^{\frac{1}{2} \ln x} \):
\[ y' = x^{\frac{1}{2} \ln x} \cdot \frac{\ln x}{x} \]Rewriting \( x^{\frac{1}{2} \ln x} \) as \( x^{\ln \sqrt{x}} \), we get:
\[ y' = \frac{x^{\ln \sqrt{x}} \ln x}{x} \]which matches option (B):
\[ \boxed{\frac{x^{\ln \sqrt{x}} \ln x}{x}} \]