Answer is: option2
-1Solution:
We are given:
\[ h(x) = \frac{g(x)}{x^2} \]and we need to find \( h'(x) \) at \( x = 2 \), given:
\[ g(2) = 3, \quad g'(2) = -1 \]Since \( h(x) = \frac{g(x)}{x^2} \), we apply the quotient rule:
\[ \left( \frac{g(x)}{x^2} \right)' = \frac{g'(x) x^2 - g(x) \cdot 2x}{x^4} \] At \( x = 2 \): \[ h'(2) = \frac{(-1)(2^2) - (3)(2 \cdot 2)}{2^4} \] \[ = \frac{-4 - 12}{16} \] \[ = \frac{-16}{16} = -1 \] The correct answer is: \[ \boxed{-1} \quad \]