2. Which of the following is the antiderivative of \( f(x) = \tan x \) ?






Answer is: option4

\( -\ln |\cos x| + C \)

Solution:

\[ \tan x = \frac{\sin x}{\cos x} \]

So the integral becomes:

\[ \int \frac{\sin x}{\cos x} \, dx \]

Using substitution: Let \( u = \cos x \)

\[ \Rightarrow \, du = -\sin x \, dx \]

We need \( \sin x \, dx \), so:

\[ -du = \sin x \, dx \]

\[ \int \frac{\sin x}{\cos x} \, dx = \int \frac{1}{u}(-du) = - \int \frac{1}{u} \, du \]

\[ - \int \frac{1}{u} \, du = - \ln |u| + C \]

Now, substitute back \( u = \cos x \):

\[ - \ln |\cos x| + C \]

This confirms that choice (D) is correct.

Previous Next