22. If \( n \) is a positive integer, then \[ \lim_{n \to \infty} 2n \left[ \sqrt{\frac{2}{n}} + \sqrt{\frac{4}{n}} + \cdots + \sqrt{\frac{2n}{n}} \right] \] can be expressed as






Answer is: option2

\( \int_0^2 \sqrt{x} \, dx \)

Solution:

Given:

\[ \lim_{n \to \infty} 2n \sum_{k=1}^{n} \sqrt{\frac{2k}{n}} \]

Riemann Sum Form:

\[ \lim_{n \to \infty} \sum_{k=1}^{n} \left( \frac{b - a}{n} \right) f \left( a + \frac{(b - a)k}{n} \right) \]

The coefficient \( \frac{2}{n} \) in the given limit corresponds to \( \frac{b - a}{n} \) in the Riemann sum.

\[ \frac{b - a}{n} = \frac{2}{n} \Rightarrow b - a = 2 \]

The argument of the function \( \sqrt{\frac{2k}{n}} \) corresponds to: \[ f\left(a + \frac{(b - a)k}{n}\right) \]

Set \( a = 0 \):

Given \( b - a = 2 \) and choosing \( a = 0 \), we get \( b = 2 \).

Substitute \( a = 0 \) into the function argument:

\[ f\left(0 + \frac{2k}{n}\right) = \sqrt{\frac{2k}{n}} \Rightarrow f\left(\frac{2k}{n}\right) = \sqrt{\frac{2k}{n}} \]

\[ f(x) = \sqrt{x} \]

Substituting \( f(x) = \sqrt{x}, a = 0 \), and \( b = 2 \) into the Riemann sum: \[ \lim_{n \to \infty} 2n \sum_{k=1}^{n} \sqrt{\frac{2k}{n}} = \int_0^2 \sqrt{x} \, dx \]

This corresponds to option (B)

Previous Next