Answer is: option4
\(\ln 1 + \ln 9 + \ln 25 + \ln 7\)Solution:
Interval: \([0, 6]\)
Subdivisions: \(n = 3\)
Subinterval width:
\[ h = \frac{6 - 0}{3} = 2 \]
Subinterval points:
\(x_0 = 0,\ x_1 = 2,\ x_2 = 4,\ x_3 = 6\)
Trapezoidal rule approximation:
\[
\int_a^b f(x)\, dx \approx \frac{h}{2} \left[ f(x_0) + 2f(x_1) + 2f(x_2) + f(x_3) \right]
\]
Let \(f(x) = \ln(x + 1)\), then:
- \(f(0) = \ln(1)\)
- \(f(2) = \ln(3)\)
- \(f(4) = \ln(5)\)
- \(f(6) = \ln(7)\)
So the approximation becomes: \[ \frac{2}{2} \left[ \ln(1) + 2\ln(3) + 2\ln(5) + \ln(7) \right] \]
Apply log identities:
- \(2\ln(3) = \ln(9)\)
- \(2\ln(5) = \ln(25)\)
So it becomes:
\[
\ln(1) + \ln(9) + \ln(25) + \ln(7)
\]
Which matches Option D.