4. ∫(x2−2)xdx=
Answer is: option3
Solution:
(x2−2)x=x2x−2x
Recall: x=x1/2, so:
So the integral becomes:
∫(x5/2−2x1/2)dx
∫x5/2dx=x7/27/2=27x7/2
∫2x1/2dx=2⋅x3/23/2=43x3/2
∫(x2−2)xdx=27x7/2−43x3/2+C
So the final answer is: (C)
27x3x−43xx+C