41. If f is the antiderivative of \( \frac{\sqrt{x}}{1 + x^3} \) such that \( f(1) = 2 \), then \( f(3) = \)
(calculator)






Answer is: option2

2.397

Solution:

Since f is an antiderivative of \( \frac{\sqrt{x}}{1 + x^3} \), that means:

\( f(x) = \int \frac{\sqrt{x}}{1 + x^3} dx + C \)

Given \( f(1) = 2 \), we can compute the value of \( f(3) \) using the Fundamental Theorem of Calculus:

\( f(3) = f(1) + \int_1^3 \frac{\sqrt{x}}{1 + x^3} dx \)

Using a graphing calculator, we get:

\( \int_1^3 \frac{\sqrt{x}}{1 + x^3} dx = 0.397 \)

\( f(3) = f(1) + \int_1^3 \frac{\sqrt{x}}{1 + x^3} dx = 2 + 0.397 = \boxed{2.397} \)

Hence option B

Previous Next