Answer is: option4
\( 4 \tan^{-1} \left( \frac{x - 3}{4} \right) + C \)Solution:
We are given the integral:
\[ \int \frac{16}{x^2 - 6x + 25} \, dx \]
The quadratic in the denominator is:
\[ x^2 - 6x + 25 = (x - 3)^2 + 16 \]
So we rewrite the integral as:
\[ \int \frac{16}{(x - 3)^2 + 4^2} \, dx \]
Let:
\[ u = \frac{x - 3}{4} \Rightarrow x - 3 = 4u \Rightarrow dx = 4 \, du \]
Substitute into the integral:
\[ \int \frac{16}{(x - 3)^2 + 16} \, dx = \int \frac{16}{(4u)^2 + 4^2} \cdot 4 \, du = \int \frac{64}{16(u^2 + 1)} \, du = 4 \int \frac{1}{u^2 + 1} \, du \]
We know:
\[ 4 \int \frac{1}{u^2 + 1} \, du = 4 \tan^{-1}(u) + C \]
Substitute back \( u = \frac{x - 3}{4} \):
\[ = 4 \tan^{-1} \left( \frac{x - 3}{4} \right) + C \]
Hence option D