Answer is: option4
\(\frac{1}{2}x \sin(2x) + \frac{1}{4} \cos(2x) + C\)
Solution:
To solve the integral \( \int x \cos(2x) \, dx \), we will use integration by parts.
Step 1: Differentiate and Integrate
We choose \( u = x \) and \( dv = \cos(2x) \, dx \).
Differentiate \( u \) and integrate \( dv \):
\[ u = x \quad \Rightarrow \quad du = dx \]
\[ dv = \cos(2x) \, dx \quad \Rightarrow \quad v = \frac{1}{2} \sin(2x) \]
Step 2: Apply the Integration by Parts Formula
The integration by parts formula is:
\[ \int u \, dv = u v - \int v \, du \]
Substituting the values, we get:
\[ \int x \cos(2x) \, dx = x \cdot \frac{1}{2} \sin(2x) - \int \frac{1}{2} \sin(2x) \, dx \]
\[ = \frac{1}{2} x \sin(2x) - \frac{1}{2} \int \sin(2x) \, dx \]
Step 3: Solve the Remaining Integral
We compute \( \int \sin(2x) \, dx \):
\[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) \]
Substituting this into the previous equation, we get:
\[ \frac{1}{2} x \sin(2x) - \frac{1}{2} \left( -\frac{1}{2} \cos(2x) \right) \]
\[ = \frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x) \]
Step 4: Add the Constant of Integration
Finally, adding the constant of integration \( C \):
\[ \int x \cos(2x) \, dx = \frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x) + C \]
Final Answer
\[ \frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x) + C \]