Answer is: option4
\(\frac{x}{\sqrt{1 - x^2}}\)
Solution:
We are given the equation:
\[ \int \arccos(x) \, dx = x \arccos(x) + \int f(x) \, dx \]
Step 1: Use Integration by Parts for \( \int \arccos(x) \, dx \)
We will solve \( \int \arccos(x) \, dx \) using integration by parts. Let us choose:
\[ u = \arccos(x) \quad \Rightarrow \quad du = \frac{-1}{\sqrt{1 - x^2}} \, dx \]
\[ dv = dx \quad \Rightarrow \quad v = x \]
Step 2: Apply Integration by Parts
Using the integration by parts formula:
\[ \int u \, dv = u v - \int v \, du \]
Substitute the values of \( u \), \( du \), \( v \), and \( dv \):
\[ \int \arccos(x) \, dx = x \arccos(x) - \int x \cdot \frac{-1}{\sqrt{1 - x^2}} \, dx \]
Simplify the expression:
\[ \int \arccos(x) \, dx = x \arccos(x) + \int \frac{x}{\sqrt{1 - x^2}} \, dx \]
Step 3: Compare with the Given Equation
We are given that:
\[ \int \arccos(x) \, dx = x \arccos(x) + \int f(x) \, dx \]
By comparing this with the result of integration by parts, we see that:
\[ f(x) = \frac{x}{\sqrt{1 - x^2}} \]
Final Answer
The function \( f(x) \) is:
\[ f(x) = \frac{x}{\sqrt{1 - x^2}} \]