Answer is: option1
\(-4\)Solution:
We are tasked with finding the value of:
\[ \int_1^3 f'(x) g(x) \, dx \]
Given that:
\[ \int_1^3 f(x) g'(x) \, dx = 8 \]
Step 1: Use Integration by Parts
We will use the integration by parts formula:
\[ \int u \, dv = u v - \int v \, du \]
Let us set:
\[ u = f(x) \quad \Rightarrow \quad du = f'(x) \, dx \]
\[ dv = g'(x) \, dx \quad \Rightarrow \quad v = g(x) \]
Applying integration by parts to \( \int f(x) g'(x) \, dx \), we get:
\[ \int_1^3 f(x) g'(x) \, dx = \left[ f(x) g(x) \right]_1^3 - \int_1^3 f'(x) g(x) \, dx \]
Step 2: Substitute Given Information
We are given that:
\[ \int_1^3 f(x) g'(x) \, dx = 8 \]
Thus, the equation becomes:
\[ 8 = \left[ f(x) g(x) \right]_1^3 - \int_1^3 f'(x) g(x) \, dx \]
Step 3: Evaluate \( \left[ f(x) g(x) \right]_1^3 \)
From the table, we have the following values:
- At \( x = 1 \), \( f(1) = -2 \) and \( g(1) = 3 \)
- At \( x = 3 \), \( f(3) = 2 \) and \( g(3) = -1 \)
Now, calculate:
\[ \left[ f(x) g(x) \right]_1^3 = f(3) g(3) - f(1) g(1) = (2)(-1) - (-2)(3) = -2 + 6 = 4 \]
Step 4: Solve for the Unknown Integral
Substitute \( \left[ f(x) g(x) \right]_1^3 = 4 \) into the equation:
\[ 8 = 4 - \int_1^3 f'(x) g(x) \, dx \]
Solving for \( \int_1^3 f'(x) g(x) \, dx \):
\[ \int_1^3 f'(x) g(x) \, dx = 4 - 8 = -4 \]
Final Answer
The value of the integral is:
\[ \int_1^3 f'(x) g(x) \, dx = -4 \]