Answer is: option2
\( 3 \)Solution:
Velocity Function:
\[ v(t) = -t^3 e^{-t} \]
Differentiating:\[ v'(t) = (-3t^2 e^{-t}) + (-t^3 (-e^{-t})) \]
\[ = -3t^2 e^{-t} + t^3 e^{-t} \]
\[ = e^{-t} (-3t^2 + t^3) \]
Finding Critical Points:Setting \( v'(t) = 0 \):
\[ e^{-t} (t^3 - 3t^2) = 0 \]
Since \( e^{-t} \neq 0 \), solving:
\[ t^3 - 3t^2 = 0 \]
\[ t^2 (t - 3) = 0 \]
\[ t^2 = 0 \quad \text{or} \quad t - 3 = 0 \]
\[ t = 0 \quad \text{or} \quad t = 3 \]
Confirming Minimum with Second Derivative:\[ v''(t) = \frac{d}{dt} [e^{-t} (t^3 - 3t^2)] \]
Using the product rule:
\[ v''(t) = e^{-t} (3t^2 - 6t) + (-e^{-t}) (t^3 - 3t^2) \]
\[ = e^{-t} [(3t^2 - 6t) - (t^3 - 3t^2)] \]
\[ = e^{-t} (-t^3 + 6t^2 - 6t) \]
Evaluating at \( t = 3 \):\[ v''(3) = e^{-3} (-27 + 54 - 18) \]
\[ = e^{-3} (9) \]
Since \( v''(3) > 0 \), \( t = 3 \) is a local minimum.