Answer is: option4
\( \frac{dL}{dt} = \frac{-k}{M^2} \left(\frac{dM}{dt}\right) \)Solution:
We are given:
\( L = \frac{k}{M} \)
Differentiating both sides with respect to \( t \):
\( \frac{dL}{dt} = \frac{d}{dt} \left( \frac{k}{M} \right) \)
Using the derivative rule for a function of the form \( \frac{k}{M} \), where \( k \) is a constant:
\( \frac{d}{dt} \left( \frac{k}{M} \right) = -\frac{k}{M^2} \cdot \frac{dM}{dt} \)
\( \frac{dL}{dt} = -\frac{k}{M^2} \cdot \frac{dM}{dt} \)
Final Answer\( \frac{dL}{dt} = -\frac{k}{M^2} \left(\frac{dM}{dt} \right) \)