Answer is: option4
\( h < 1.5 \)Solution:
Let:
- \( b \) be the base of the triangle (cm)
- \( h \) be the height of the triangle (cm)
- \( A \) be the area of the triangle (\(\text{cm}^2\))
Given rates:
- \(\frac{db}{dt} = -0.2\) cm/sec (since the base is decreasing)
- \(\frac{dh}{dt} = 0.1\) cm/sec (since the height is increasing)
The formula for the area of a triangle is:
\[ A = \frac{1}{2} bh \]
Differentiate both sides with respect to time \( t \):\[ \frac{dA}{dt} = \frac{1}{2} \left( b \frac{dh}{dt} + h \frac{db}{dt} \right) \]
Substituting the given valuesGiven \( \frac{db}{dt} = -0.2 \), \( \frac{dh}{dt} = 0.1 \), and \( b = 3 \):
\[ \frac{dA}{dt} = \frac{1}{2} \left( (3)(0.1) + h(-0.2) \right) \]
\[ \frac{dA}{dt} = \frac{1}{2} (0.3 - 0.2h) \]
For the area to be increasing, we need \( \frac{dA}{dt} > 0 \):\[ \frac{1}{2} (0.3 - 0.2h) > 0 \]
\[ 0.3 - 0.2h > 0 \]
\[ 0.3 > 0.2h \]
\[ \frac{0.3}{0.2} > h \]
\[ 1.5 > h \]
Final Answer - \( h < 1.5 \)