Answer is: option3
-2.5 units/secSolution:
We are given the function:
\[ y = 2e^{\cos x} \]Both \( x \) and \( y \) vary with time \( t \), and we are given that:
\[ \frac{dy}{dt} = 5 \]We need to find \( \frac{dx}{dt} \) when \( x = \frac{\pi}{2} \).
Using Implicit Differentiation:
\[ \frac{d}{dt} (y) = \frac{d}{dt} (2e^{\cos x}) \]Using the Chain Rule:
\[ \frac{dy}{dt} = 2e^{\cos x} \cdot (-\sin x) \cdot \frac{dx}{dt} \] \[ 5 = -2e^{\cos x} \sin x \cdot \frac{dx}{dt} \]Substituting \( x = \frac{\pi}{2} \):
- \(\cos \frac{\pi}{2} = 0\), so \( e^{\cos x} = e^0 = 1 \).
- \(\sin \frac{\pi}{2} = 1 \).
Thus, our equation simplifies to:
\[ 5 = -2(1)(1) \cdot \frac{dx}{dt} \] \[ 5 = -2 \frac{dx}{dt} \]Solving for \( \frac{dx}{dt} \):
\[ \frac{dx}{dt} = \frac{5}{-2} = -2.5 \]Final Answer: \(-2.5\) units/sec