Answer is: option1
1 knotSolution:
\( D^2 = W^2 + S^2 \)
where \( D \) is the distance between the two ships, \( W(t) \) is the westward distance, and \( S(t) \) is the southward distance.
Differentiate both sides with respect to \( t \):
\( \frac{d}{dt} (D^2) = \frac{d}{dt} (W^2 + S^2) \)
Using the chain rule:
\( 2D \frac{dD}{dt} = 2W \frac{dW}{dt} + 2S \frac{dS}{dt} \)
Cancel the factor of 2:
\( D \frac{dD}{dt} = W \frac{dW}{dt} + S \frac{dS}{dt} \)
Solving for \( \frac{dD}{dt} \):
\( \frac{dD}{dt} = \frac{W \frac{dW}{dt} + S \frac{dS}{dt}}{D} \)
We are given:
\( W(1) = 5, W'(1) = 0.5 \)
\( S(1) = 4, S'(1) = 1 \)
Compute \( D(1) \):
\( D(1) = \sqrt{W(1)^2 + S(1)^2} = \sqrt{5^2 + 4^2} = \sqrt{25 + 16} = \sqrt{41} \)
Now substitute:
\( \frac{dD}{dt} = \frac{(5 \times 0.5) + (4 \times 1)}{\sqrt{41}} \)
\( \frac{dD}{dt} = \frac{2.5 + 4}{\sqrt{41}} \)
\( \frac{dD}{dt} = \frac{6.5}{\sqrt{41}} \)
Approximating \( \sqrt{41} \approx 6.4 \):
\( \frac{dD}{dt} \approx \frac{6.5}{6.4} \approx 1.02 \)
Final Answer is : 1 knot