Answer is: option4
\[ \lim_{n \to \infty} \sum_{i=1}^{n} \left(1 + \frac{2i}{3} \right)^3 \cdot \frac{2}{n} \]Solution:
We are given a definite integral and asked to find which Riemann sum approximation converges to it:
\[ \int_1^3 x^3 \, dx \]
The definite integral
\[ \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x \]
For a uniform partition of [1, 3] into \( n \) subintervals:
- \( a = 1, \, b = 3 \), so the interval length is \( b - a = 2 \)
- \( \Delta x = \frac{b-a}{n} = \frac{2}{n} \)
- General form of a sample point: \( x_i^* = a + i \cdot \Delta x = 1 + \frac{2i}{n} \)
We are integrating \( f(x) = x^3 \), so the Riemann sum becomes:
\[ \sum_{i=1}^n \left( 1 + \frac{2i}{n} \right)^3 \cdot \frac{2}{n} \]
Now match this with the options.
(D): \[ \lim_{n \to \infty} \sum_{i=1}^n \left( 1 + \frac{2i}{n} \right)^3 \cdot \frac{2}{n} \]