Answer is: option1
\( \int_{-1}^2 x^2 \, dx \)Solution:
The general form of a Riemann sum is:
\[ \lim_{n \to \infty} \sum_{i=1}^n f\left(a + \frac{(b-a)i}{n}\right) \cdot \frac{b-a}{n} \]
The given sum is:
\[ \sum_{i=1}^n \left(-1 + \frac{3i}{n}\right)^2 \cdot \frac{3}{n} \]
- The term \( \frac{3}{n} \) corresponds to \( \frac{b - a}{n} \), so:
\[ b - a = 3 \]
- The term \( \left(-1 + \frac{3i}{n} \right)^2 \) corresponds to \( f\left(a + \frac{(b - a)i}{n} \right) \), so:
\[ f\left(a + \frac{3i}{n}\right) = \left(-1 + \frac{3i}{n} \right)^2 \]
Let’s choose \( a = -1 \) (a common starting point for simplicity). Then:
\[ b - (-1) = 3 \Rightarrow b = 2 \]
Now, the function argument becomes:
\[ f\left(-1 + \frac{3i}{n} \right) = \left(-1 + \frac{3i}{n} \right)^2 \]
This suggests that:
\[ f(x) = x^2 \]
Substituting \( f(x) = x^2 \), \( a = -1 \), and \( b = 2 \) into the Riemann sum, the limit becomes:
\[ \int_{-1}^2 x^2 \, dx \]
This matches option (A).