24. If \( \int_a^b f(x)\,dx = 2a - 5b \), then \( \int_a^b \left[ f(x) - 2 \right] dx = \) ?






Answer is: option3

4a - 7b

Solution:

Given Integral:

\[ \int_a^b f(x)\,dx = 2a - 5b \]

Compute the Integral of the Constant:

\[ \int_a^b 2\,dx = 2(b - a) \]

Set Up the Desired Integral:

\[ \int_a^b [f(x) - 2]\,dx = \int_a^b f(x)\,dx - \int_a^b 2\,dx \]

Substitute the Known Values:

\[ \int_a^b [f(x) - 2]\,dx = (2a - 5b) - 2(b - a) \]

Simplify the Expression:

\[ \int_a^b [f(x) - 2]\,dx = 2a - 5b - 2b + 2a = 4a - 7b \]

Final Answer:

\[ \boxed{4a - 7b} \]

Correct Option: (C) \( 4a - 7b \)

Previous Next