25. If \( \int_1^6 f(x)\,dx = \frac{15}{2} \) and \( \int_6^4 f(x)\,dx = 5 \), then what is the value of \( \int_1^4 f(x)\,dx \)?






Answer is: option4

\( \frac{25}{2} \)

Solution:

When you reverse the limits of an integral, the sign changes:

\[ \int_6^4 f(x)\,dx = -\int_4^6 f(x)\,dx = -5 \Rightarrow \int_4^6 f(x)\,dx = -5 \]

Notice that:

\[ \int_1^6 f(x)\,dx = \int_1^4 f(x)\,dx + \int_4^6 f(x)\,dx \]

Substitute the known values:

\[ \frac{15}{2} = \int_1^4 f(x)\,dx + (-5) \]

Solve for \( \int_1^4 f(x)\,dx \):

\[ \int_1^4 f(x)\,dx = \frac{15}{2} + 5 = \frac{15}{2} + \frac{10}{2} = \frac{25}{2} \]

Option D

Previous Next