Answer is: option2
\( A + B \)Solution:
We are given the expression:
\[ \int_{-3}^{3} f(x) \, dx - 2 \int_{-1}^{3} f(x) \, dx \]
We are told:
- The area of the region from \(-3\) to \(-1\), where \(f(x) > 0\), is \(A\).
- The area from \(-1\) to \(3\), where \(f(x) < 0\), is \(B\).
Since integrals take into account the sign of the function:
- \[ \int_{-3}^{-1} f(x) \, dx = A \] because \(f(x) > 0\)
- \[ \int_{-1}^{3} f(x) \, dx = -B \] because \(f(x) < 0\)
So:
\[ \int_{-3}^{3} f(x) \, dx = \int_{-3}^{-1} f(x) \, dx + \int_{-1}^{3} f(x) \, dx = A + (-B) = A - B \]
Now compute the full expression:
\[ \int_{-3}^{3} f(x) \, dx - 2 \int_{-1}^{3} f(x) \, dx = (A - B) - 2(-B) = A - B + 2B = A + B \]
Final Answer: (B) \(A + B\)