Answer is: option3
7Solution:
Given Information:
- \(\int_{-2}^{6} f(x)\,dx = 10\)
- \(\int_{2}^{6} f(x)\,dx = 3\)
Find \(\int_{-2}^{2} f(x)\,dx\):
\[ \int_{-2}^{6} f(x)\,dx = \int_{-2}^{2} f(x)\,dx + \int_{2}^{6} f(x)\,dx \] \[ 10 = \int_{-2}^{2} f(x)\,dx + 3 \] \[ \int_{-2}^{2} f(x)\,dx = 10 - 3 = 7 \]
Evaluate \(\int_{2}^{6} f(4 - x)\,dx\):
Let's perform a substitution: \( u = 4 - x \Rightarrow du = -dx \Rightarrow dx = -du \)
- When \(x = 2\), \(u = 4 - 2 = 2\)
- When \(x = 6\), \(u = 4 - 6 = -2\)
\[ \int_{2}^{6} f(4 - x)\,dx = \int_{2}^{-2} f(u)(-du) = \int_{-2}^{2} f(u)\,du \]
We already found that \(\int_{-2}^{2} f(u)\,du = 7\)
\[ \int_{2}^{6} f(4 - x)\,dx = 7 \]
Option C