Answer is: option3
21Solution:
- \( f(-2) = -1 \)
- \( f(0) = 0 \)
- \( f(2) = 3 \)
- \( f(4) = 4 \)
- \( f(6) = 3 \)
- \( f(8) = 2 \)
We use the Trapezoidal Rule formula again:
\[ \int_{-2}^{8} f(x) \, dx \approx \frac{\Delta x}{2} \left[f(-2) + 2f(0) + 2f(2) + 2f(4) + 2f(6) + f(8)\right] \]
Since \( \Delta x = 2 \), we get:
\[ = \frac{2}{2} \left[-1 + 2(0) + 2(3) + 2(4) + 2(3) + 2\right] \]
\[ = 1 \cdot \left[-1 + 0 + 6 + 8 + 6 + 2\right] = -1 + 0 + 6 + 8 + 6 + 2 = 21 \]
Option C