35. \[ \frac{d}{dx} \int_{1}^{x^2} \sqrt{3 + t^2} \, dt = \]






Answer is: option3

\( 2x \sqrt{3 + x^4} \)

Solution:

\[ \frac{d}{dx} \int_{a}^{u(x)} f(t) \, dt = f(u(x)) \cdot \frac{du}{dx} \]

Here:

  1. \( a = 1 \)
  2. \( u(x) = x^2 \)
  3. \( f(t) = \sqrt{3 + t^2} \)

So:

\[ \frac{d}{dx} \int_{1}^{x^2} \sqrt{3 + t^2} \, dt = \sqrt{3 + (x^2)^2} \cdot \frac{d}{dx}(x^2) \]

  1. \( (x^2)^2 = x^4 \)
  2. \( \frac{d}{dx}(x^2) = 2x \)

So the derivative becomes:

\[ 2x \cdot \sqrt{3 + x^4} \]

Hence option C

Previous Next