Answer is: option2
1/2Solution:
Let \( u(x) = \sqrt{x} \), then:
\( f(x) = \int_0^{u(x)} g(t)\,dt \Rightarrow f'(x) = g(u(x)) \cdot u'(x) \)
So:
\( f'(x) = g(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \)
\( f'(4) = g(2) \cdot \frac{1}{2\sqrt{4}} = 2 \cdot \frac{1}{4} = \frac{1}{2} \)
\( g(2) = 2 \) from the graph
Hence option B