38. Let \( f \) be the function given by \[ f(x) = \int_0^x \cos(t^2 + 2)\,dt \quad \text{for} \quad 0 \leq x \leq \pi. \] On which of the following intervals is \( f \) increasing? (calculator)






Answer is: option3

\( 1.647 < x \leq 2.419 \)

Solution:

\( f'(x) = \frac{d}{dx} \left( \int_0^x \cos(t^2 + 2) \, dt \right) = \cos(x^2 + 2) \)

So, \( f(x) \) is increasing when \( f'(x) > 0 \), i.e., when:
\( \cos(x^2 + 2) > 0 \)

Graph the function \( \cos(x^2 + 2) \) on Desmos graphing calculator

\( \cos(x^2 + 2) > 0 \quad \text{when} \quad x \in (1.647, 2.419) \)

Hence option C

Previous Next