43. If \( f(x) = \sqrt{x^4 - 3x + 4} \) and \( g \) is the antiderivative of \( f \), such that \( g(3) = 7 \), then \( g(0) = \)
(calculator)






Answer is: option1

-2.966

Solution:

We're given:

  1. \( f(x) = \sqrt{x^4 - 3x + 4} \)
  2. \( g \) is the antiderivative of \( f \), so:

\[ g(x) = \int f(x)\, dx \]

  1. \( g(3) = 7 \)
  2. We need to find \( g(0) \)

\[ g(0) = g(3) - \int_0^3 f(x)\, dx = 7 - \int_0^3 \sqrt{x^4 - 3x + 4}\, dx \]

Using a graphing calculator, we get:

\[ \int_0^3 \sqrt{x^4 - 3x + 4} \, dx = 9.967 \]

So,

\[ g(0) = 7 - 9.967 = \boxed{-2.967} \]

Hence option A.

Previous Next