44. If \( f \) is a continuous function and \( F'(x) = f(x) \) for all real numbers \( x \), then \[ \int_2^{10} f\left( \frac{-1}{2}x \right) dx =\ ? \]






Answer is: option3

\( 2[F(5) - F(1)] \)

Solution:

We are given:

  1. \( F'(x) = f(x) \)
  2. We are to evaluate: \( \int_2^{10} f\left( \frac{1}{2}x \right) dx \)

Let:

\( u = \frac{1}{2}x \Rightarrow x = 2u \Rightarrow dx = 2\,du \)

Change the limits:

  1. When \( x = 2 \), \( u = 1 \)
  2. When \( x = 10 \), \( u = 5 \)

Now the integral becomes:

\[ \int_2^{10} f\left( \frac{1}{2}x \right) dx = \int_1^5 f(u) \cdot 2\,du = 2 \int_1^5 f(u)\,du \]

Since \( F'(x) = f(x) \), by the Fundamental Theorem of Calculus:

\[ \int_1^5 f(u)\,du = F(5) - F(1) \]

So:

\[ 2 \int_1^5 f(u)\,du = 2[F(5) - F(1)] \]

Hence option C

Previous Next