46. Evaluate the integral: \[ \int \frac{28x^2 + 33x - 35}{4x + 7} \, dx \]






Answer is: option2

\( \frac{7x^2}{2} - 4x - \frac{7}{4} \ln|4x + 7| + C \)

Solution:

Using long division method:

We have:

\[ \frac{28x^2 + 33x - 35}{4x + 7} = 7x - 4 + \frac{-7}{4x + 7} \]

Now integrate term by term:

\[ \int \left(7x - 4 + \frac{-7}{4x + 7}\right) dx = \int 7x \, dx - \int 4 \, dx - \int \frac{7}{4x + 7} dx \]

\[ \int \frac{28x^2 + 33x - 35}{4x + 7} dx = \frac{7x^2}{2} - 4x - \frac{7}{4} \ln|4x + 7| + C \]

Hence option B

Previous Next