47. Evaluate the integral \[ \int \frac{4x^2}{x - 2} \, dx \]






Answer is: option2

\( \quad 2x^2 + 8x + 16 \ln|x - 2| + C \)

Solution:

Using long division method:

we have:

\[ \frac{4x^2}{x - 2} = 4x + 8 + \frac{16}{x - 2} \]

Integrate Term by Term

\[ \int \left( 4x + 8 + \frac{16}{x - 2} \right) dx = \int 4x \, dx + \int 8 \, dx + \int \frac{16}{x - 2} \, dx \]

\[ \int \frac{4x^2}{x - 2} \, dx = 2x^2 + 8x + 16 \ln|x - 2| + C \]

Hence option B

Previous Next