Answer is: option3
\(-\frac{x}{2} \cos(2x) + \frac{1}{4} \sin(2x) + C\)
Solution:
We are tasked with finding the value of the following integral:
\[ \int x \sin(2x) \, dx \]
Step 1: Use Integration by Parts
We will use the integration by parts formula:
\[ \int u \, dv = u v - \int v \, du \]
Let us set:
\[ u = x \quad \Rightarrow \quad du = dx \]
\[ dv = \sin(2x) \, dx \quad \Rightarrow \quad v = -\frac{1}{2} \cos(2x) \]
Applying integration by parts to \( \int x \sin(2x) \, dx \), we get:
\[ \int x \sin(2x) \, dx = x \left( -\frac{1}{2} \cos(2x) \right) - \int \left( -\frac{1}{2} \cos(2x) \right) \, dx \]
Step 2: Solve the Remaining Integral
Now, simplify the equation:
\[ \int x \sin(2x) \, dx = -\frac{x}{2} \cos(2x) + \frac{1}{2} \int \cos(2x) \, dx \]
We know that:
\[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) \]
Substitute this result into the equation:
\[ = -\frac{x}{2} \cos(2x) + \frac{1}{4} \sin(2x) \]
Step 3: Final Answer
Adding the constant of integration, we get:
\[ \int x \sin(2x) \, dx = -\frac{x}{2} \cos(2x) + \frac{1}{4} \sin(2x) + C \]