Answer is: option2
\(\frac{1}{3} x^2 \sin(3x)\)
Solution:
We are given the equation:
\[ \int x^2 \cos(3x) \, dx = f(x) - \frac{2}{3} \int x \sin(3x) \, dx \]
We need to determine \( f(x) \).
Step 1: Solve \( \int x^2 \cos(3x) \, dx \) using Integration by Parts
We will solve \( \int x^2 \cos(3x) \, dx \) using integration by parts. Let us choose:
\[ u = x^2 \quad \Rightarrow \quad du = 2x \, dx \]
\[ dv = \cos(3x) \, dx \quad \Rightarrow \quad v = \frac{1}{3} \sin(3x) \]
Step 2: Apply Integration by Parts
Now, apply the integration by parts formula:
\[ \int u \, dv = u v - \int v \, du \]
Substitute the values of \( u \), \( du \), \( v \), and \( dv \):
\[ \int x^2 \cos(3x) \, dx = x^2 \cdot \frac{1}{3} \sin(3x) - \int 2x \cdot \frac{1}{3} \sin(3x) \, dx \]
Simplify the expression:
\[ \int x^2 \cos(3x) \, dx = \frac{1}{3} x^2 \sin(3x) - \frac{2}{3} \int x \sin(3x) \, dx \]
Step 3: Compare with the Given Equation
Now, comparing this result with the given equation:
\[ \int x^2 \cos(3x) \, dx = f(x) - \frac{2}{3} \int x \sin(3x) \, dx \]
We can see that:
\[ f(x) = \frac{1}{3} x^2 \sin(3x) \]
Final Answer
The function \( f(x) \) is:
\[ f(x) = \frac{1}{3} x^2 \sin(3x) \]