Answer is: option3
1.7Solution:
We are given:
\( f(x) = x^2 - 4x + 5 \).
Differentiate:
\( f'(x) = 2x - 4 \).
At \( x = 1 \):
\( f(1) = (1)^2 - 4(1) + 5 = 1 - 4 + 5 = 2 \).
\( f'(1) = 2(1) - 4 = 2 - 4 = -2 \).
Using the tangent line equation:
\( y \approx f(1) + f'(1)(x - 1) \).
\( y \approx 2 + (-2)(x - 1) \).
\( y \approx 2 - 2(x - 1) \).
\( y \approx 2 - 2x + 2 \).
\( y \approx 4 - 2x \).
We need to find the largest \( x \) such that the error is less than 0.5:
\( |f(x) - (4 - 2x)| < 0.5 \).
Compute \( f(x) \):
\( f(x) = x^2 - 4x + 5 \).
Substituting \( f(x) - (4 - 2x) \):
\( |(x^2 - 4x + 5) - (4 - 2x)| < 0.5 \).
\( |x^2 - 4x + 5 - 4 + 2x| < 0.5 \).
\( |x^2 - 2x + 1| < 0.5 \).
\( |(x - 1)^2| < 0.5 \).
\( (x - 1)^2 < 0.5 \).
Taking the square root:
\( |x - 1| < \sqrt{0.5} \).
Approximating \( \sqrt{0.5} \approx 0.707 \), we get:
\( -0.707 < x - 1 < 0.707 \).
\( 1 - 0.707 < x < 1 + 0.707 \).
\( 0.293 < x < 1.707 \).
The greatest \( x \) within this range is 1.7
so the correct answer is: 1.7